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Q, | lps |plp= p_l, Qp — the completion of Q.
p-adic numbers were first described by Kurt Hensel in 1897.

i Fi(X17"'7Xn):Ou 1§1§m7
Fi € Z[x1,...,xn], solubility in - Qp.

Parameters: p, n, d = max;deg F;, h = max; h(F;), m.

e K. Hensel: Let F = F(xq,...,x,) be a homogeneous polynomial
with coefficients in Z,. Let 3 € Z" be a vector such that

F(@)=0 (mod p), Ji g),;(a) #Z0 (mod p).

Then the equation F(X) = 0 has a nontrivial solution in Q.
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e C. Chevalley-E. Warning, 1936: If n > d, where d is the total
degree of F, and the polynomial has no constant term, then the
equation F(xi,...,x,) = 0 has a nontrivial solution in GF(p).

e The consequence of A. Weil's theorem about number of points
on algebraic curves over finite fields,

S.Lang and A.Weil, L.B.Nisnevich, 1954:

Let F = F(x1,...,xn) € Z[x1, ..., Xn] be an absolutely irreducible
polynomial. Then N(F, p) the number of solutions of

F(x1i,...,x) =0 (mod p)

satisfies
IN(F,p) = p" | < C(F)p"*/2,

where the positive constant C(F) depends only on the polynomial.
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e d =2, A. Meyer, 1884: An indefinite quadratic form in five or
more variables over the field of rational numbers nontrivially
represents zero in Q.

H. Hasse, 1923: Every quadratic form in five or more variables
with coefficients in Q, nontrivially represents zero in Q, for all p.

Example: Q = x? + x3 — p(x2 + xZ), p=3 (mod 4) does not
represent zero in Qp.

e d = 3, Demianov, 1951,(p # 3), D.J. Lewis, 1952: Every
cubic homogeneous polynomial equation in n > 10 variables with
coefficients in Q, has a non-trivial zero in Qp.
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e H. Davenport, D.J. Lewis, 1963: An equation
F:cle’+...+cnx,i’:0, n> d?, ¢ € Qp,

has a non-trivial zero in Qp.

Simple case (p 1 d):

e By an obvious substitution of the form x/ = pix; we can ensure
that v,(c;) < d. Then F = Gy + pGy + ... + p9~1Gy_1, where G,
are diagonal forms of degree d with coefficients not divisible by p
and with own set of variables.

e If Gy depends on more than d variables, one can apply
Chevalley’s lemma to Gy and Hensel's lemma to the form F.

e In general case one can effect a cyclic permutation of

Go, - .., Gg_1 by putting x; = pX; for all the variables in Gy and
then dividing throughout by p. Since the total number of variables
is n > d?, we can choose a cyclic permutation which will ensure
that the number of terms in Gy became larger then d.
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e Conjecture (attributed to E. Artin, 1933-1935): A form
F(x) € Qp[x1,...,xn] of degree d should have a non-trivial p-adic
zero as soon as n > d?, i.e. 1)(d) = d? independently on p.

e Counter-examples:

G. Terjanian, 1966: p =2,d = 4,n = 18.

J. Browkin, 1966: For every prime p we have v(d) > d3~¢. For any
€ > 0 there exist infinitely many forms F of degree d such that

n > d37¢ and F has only trivial zeros in Qp.

G. Arhipov, A. Karacuba, 1981:

d
¢(d) > plog2dlog|og3d

for every p.
Improvements: G. Arhipov, A. Karacuba, 1982 (the best); Lewis
and Montgomery (1983), D. Brownawell (1984).
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Main steps of the proof. p is odd.

Construction of a sequence of forms F,, only trivially representing
zero in Qp and such that

nry1 > Pnr, dr+1 < cd,ny, (C = 6p2)a

where n, is the number of variables in F,, d, = deg F,.

e Denote m = n,. Let a be a natural number, g(x) € Z[x],
deg g(x) < m,

gu) <p D =1 m,
where

1
Pt a=b.

ui=(1+p)7, as<n<...<m<

Then |g(1)| < p~™. (Interpolation)
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e /f integers xi, ..., X, satisfy

ij(p_l)r’ =0 (mod pP V3 1<i<m, then n>p™.

pixt--xa = xP'=(1+p)9 (mod pP~1)3).

f(t) =t .+t o(t)=(t—u1) - (t—um), ui=1+p)"
g(t) = f(t) —p(t)h(t),  degg(t) <m

Fu) = (1+p)ia = Zx P=UM =0 (mod plP~D)2)
j=1

| = (1] < maX(!g(l)l, (L)) < p™™.



ek=1....m
Hi(x) = D P DEHH Z =9 deg Hy = (p—1)(a+b)
j=1 j=1
> 4m +12 = Hy have no common factors.
p—

F,+1(X1, e ,Xn) = Fr(Hl, ey Hm),
Nry1=n> p", dry1 = dr(p - 1)(3 + b)

dm+ 2

anr b1

= dry1 ~ (2p+6)d,n,.
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p-adic zero as soon as n > d? and p > d.

e J. Ax, S. Kochen, 1965: For every d there is a number p(d)
such that every form with n > d? variables and p > p(d) has a
nontrivial p-adic zero.
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and |f’(a)|, can not be small simultaneously.
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Algorithms

e B.J. Birch, K. McCann, 1966: Let be F € Z[xi, ..., x,]. One
can compute an integer D,(F) with following property. Suppose
that |F(3)|p < |Dn(F)|p for some a = (a1, ...,an) € Z", then there
is a vector & = (1, ..., ap) € Zy such that F(a@) = 0,

|a —alp, < 1. Moreover

Dy(F) = O™ (@+h(F)y

Examples:

1. n=1. Let be F(x) € Z[x] an irreducible polynomial,

|F(a)lp < |R|3 then there exists o € Zj, such that F(a) =0 and
la —alp < 1. R= Res(F,F’)



2.n=2. F(x,y)=0.

oF oF

a@)a g2()/) = ResX(F(XaY)? 7)

g1(x) = Res, (F(x.y) o

|F(a1, a2)|p < \gl(al)\,za = Ja€Zp F(a,a2)

=0
Fan, 2)lp < lg2(a2); = 31 €Zp, Flag,a)=0



2.n=2. F(x,y)=0.

oF oF

a@)a g2()/) = ReSX(F(XaY)a a)

g1(x) = Resy(F(x,y)
Fav, 22)lp <le(a)l; = 3Ja2€Z, Fla,a)=0
|F(al,az)|p < |g2(32)|,2) = doa1 €Zp, F(az,a2) =0
In case
gu(@)f} < |F(an,2)lp  lea(22)[f < |F(ar, )],
= R = Res(F(x,y), g1(x), g&2(y)-

Some special cases if gt =00or go =0, or R=0.
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e A. Chistov, M. Karpinski, 1997, : In the case of systems

0 < Dy(F) < 24" " HP)
n

e Hensel :
IFa)l, <|F'(a)l2 = 3a€Zp, Fla)=0, |a—al,<1

If F(x) be an irreducible polynomial then |F(x)|, and |F’(x)|, can
not be small simultaneously at any point.
With this idea one can prove

|F(a)|, < e7®d+h) = JaeZ, Fla)=0, |a—al <1.



Theorem 1. Let 3 = (ap,...,am) € Z™! be a primitive vector
Fi(x0,.--,Xxm), i =1,...,n, be homogeneous polynomials,
I =(F1,...,Fn) CQx0,...,Xm], dim/ =r—1.If

n|Fi(@), < —c1-d* (" Nd+ k), i=1,...,n,

where d, h are real numbers such that deg F; < d, h(F;) < h, and
c1 is a positive constant depending only on m and r, then there
exists a vector & € Zg’“ such that

Fi(a@)=0 i=1,...,n, and la—3|, < 1.



Corollary
Let a=(ag,...,am) € Z™ be a primitive vector,
F(xo,...,xm) be a homogeneous polynomial. If

In|F@@)| < —c1 - d?"71(d + h),
where d, h are real numbers such that
degF <d,  h(F)<h,

and c is a positive constant depending only on m, then there exists
a vector a € Z7 such that

F(@)=0 and la—3al, < 1.



I € Q[x] = Q[xo, - - -, Xm], homogeneous ideal, associated prime
P1,...,Ps ideals, unmixed ideals: dim/ = dimp;, 1 </ <s.
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I € Q[x] = Q[xo, - - -, Xm], homogeneous ideal, associated prime
P1,...,Ps ideals, unmixed ideals: dim/ = dimp;, 1 </ <s.
unigqueness.

dim/, deg/, h(/),|l(@)], —@eQyt.
Theorem 2. Let | C Q[xo, . .., xm] be homogeneous unmixed ideal,
dim/=r—1>0and 3= (ao,...,am) € Z™! be such integer

vector that
In|/(3)]p < —c* - (deg I)* (h(!) + deg ),

where ¢ = ¢(m) > 0 is a sufficiently large constant depending only
on m. Then there exists a p-adic vector & € Zg’“ that is a zero of
| and @ —3|, < 1.



Theorem 2 = Theorem 1.
Theorem 2 is proved by induction on dim /. Assume that

In|1(@)]y < —c¥ - (deg 12 ~(h(/) + deg 1), (1)

where ¢ = ¢(m) > 0 be a sufficiently large constant, dim/ =r — 1.
e Among p; there exists a prime p C Q[xo, ..., Xm), such that

In|p(a)|, < —c* ' (degp)® *(h(p) + degp). (2)



Let / be homogeneous unmixed ideal of the ring Q[x], dim/ > 0.
Let / = 1 N...N [ be irreducible primary decomposition, p; = \/Z
be radicals and k; be multiplicities of /;. Let @ € C,™ ™, @ # 0.
Then

S
) Y kjdegp; =deg/ ;
Jj=1

2) zs:kjh(lﬂj) < h(I) + m* deg I;

Zk log | pj(@) |p=log | (@) |p.
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ideal 6(p) has unique isolated primary component, it equals to p.
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e There are polynomials Q1,..., Q: € p,
deg Q; < rdegp,  h(Q;) < h(p) + m* deg p. (3)

Projective varieties of p and 6(p) = (Q1,. .., Q) coincide. The
ideal 6(p) has unique isolated primary component, it equals to p.
e Rank of the matrix

(%) , ®)
Oxj 1<i<t, 0<j<m

modulo p equals m — r + 1.

A(X) is a minor of the size m — r 4+ 1 that does not belong to p.



In case
In|A(3)] < —c*7% - (degp)® ' (h(p) + degp)

one can construct an unmixed ideal J C Q[xo, . .., Xm],
dim J = r — 2 such that

deg J < m?deg?p
h(J) < 7m* degp(h(p) + degp).
In |J(3@)] < —c* 73 (degp)* ' (h(p) + degp) <
< —c* 4. (deg ))¥H(h(J) + deg J).

and V(J) C V(p).
Induction assumption is applied to J.



e In case
In|A(3)] > —c* 2 (degp)® *(h(p) + degp).

one can use the Hensel lemma and to prove the existence of p-adic
zero for p.



e In case
In|A(3)] > —c* 2 (degp)® *(h(p) + degp).

one can use the Hensel lemma and to prove the existence of p-adic
zero for p.
Conjecture: Right hand side of

In|F@E)|, < —c-d?"71(d + h), i=1,...,n,
should be improved to

—C1 - dm(d+ h)



