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Q, | |p, |p|p = p−1, Qp � the completion of Q.

p-adic numbers were �rst described by Kurt Hensel in 1897.

• Fi (x1, . . . , xn) = 0, 1 ≤ i ≤ m,

Fi ∈ Z[x1, . . . , xn], solubility in Qp.

Parameters: p, n, d = maxi deg Fi , h = maxi h(Fi ), m.

• K. Hensel: Let F = F (x1, . . . , xn) be a homogeneous polynomial

with coe�cients in Zp. Let a ∈ Zn be a vector such that

F (a) ≡ 0 (mod p), ∃ i
∂F

∂xi
(a) 6≡ 0 (mod p).

Then the equation F (x) = 0 has a nontrivial solution in Qp.
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p >> n, d

• C. Chevalley-E. Warning, 1936: If n > d , where d is the total

degree of F , and the polynomial has no constant term, then the

equation F (x1, . . . , xn) = 0 has a nontrivial solution in GF (p).

• The consequence of A. Weil's theorem about number of points

on algebraic curves over �nite �elds,

S.Lang and A.Weil, L.B.Nisnevich, 1954:

Let F = F (x1, . . . , xn) ∈ Z[x1, . . . , xn] be an absolutely irreducible

polynomial. Then N(F , p) the number of solutions of

F (x1, . . . , xn) ≡ 0 (mod p)

satis�es

|N(F , p)− pn−1| < C (F )pn−3/2,

where the positive constant C (F ) depends only on the polynomial.
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n >> d

• d = 2, A. Meyer, 1884: An inde�nite quadratic form in �ve or

more variables over the �eld of rational numbers nontrivially

represents zero in Q.

H. Hasse, 1923: Every quadratic form in �ve or more variables

with coe�cients in Qp nontrivially represents zero in Qp for all p.

Example: Q = x21 + x22 − p(x23 + x24 ), p ≡ 3 (mod 4) does not

represent zero in Qp.

• d = 3, Demianov, 1951,(p 6= 3), D.J. Lewis, 1952: Every
cubic homogeneous polynomial equation in n ≥ 10 variables with

coe�cients in Qp has a non-trivial zero in Qp.
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• H. Davenport, D.J. Lewis, 1963: An equation

F = c1x
d
1 + . . .+ cnx

d
n = 0, n > d2, cj ∈ Qp,

has a non-trivial zero in Qp.

Simple case (p - d):
• By an obvious substitution of the form x ′i = pλi xi we can ensure

that νp(ci ) < d . Then F = G0 + pG1 + . . .+ pd−1Gd−1, where Gk

are diagonal forms of degree d with coe�cients not divisible by p
and with own set of variables.

• If G0 depends on more than d variables, one can apply

Chevalley's lemma to G0 and Hensel's lemma to the form F .
• In general case one can e�ect a cyclic permutation of

G0, . . . ,Gd−1 by putting xi = px̃i for all the variables in G0 and

then dividing throughout by p. Since the total number of variables

is n > d2, we can choose a cyclic permutation which will ensure

that the number of terms in G0 became larger then d .
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n >> d

• R. Brauer, 1945: There exists a positive function ψ(d) such

that any system

Fi (x1, . . . , xn) = 0, Fi ∈ Z[x1, . . . , xn], 1 ≤ i ≤ m,

with n > ψ(d) is soluble in Qp.

Best upper bounds for ψ(d) are

• W. Schmidt, 1984: logψ(d) = o(2dd!)

• T. Wooley, 1998: logψ(d) ≤ 2d log d .

• J. Ax, S. Kochen, 1965: For every d there is a number p(d)
such that every form with n > d2 variables and p > p(d) has a

nontrivial p-adic zero.
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n >> d

• Conjecture (attributed to E. Artin, 1933-1935): A form

F (x) ∈ Qp[x1, . . . , xn] of degree d should have a non-trivial p-adic
zero as soon as n > d2, i.e. ψ(d) = d2 independently on p.

• Counter-examples:
G. Terjanian, 1966: p = 2, d = 4, n = 18.
J. Browkin, 1966: For every prime p we have ψ(d) ≥ d3−ε. For any
ε > 0 there exist in�nitely many forms F of degree d such that

n > d3−ε and F has only trivial zeros in Qp.

G. Arhipov, A. Karacuba, 1981:

ψ(d) > p
d

log2 d log log3 d

for every p.
Improvements: G. Arhipov, A. Karacuba, 1982 (the best); Lewis

and Montgomery (1983), D. Brownawell (1984).
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Main steps of the proof. p is odd.

Construction of a sequence of forms Fr , only trivially representing

zero in Qp and such that

nr+1 > pnr , dr+1 < cdrnr , (c = 6p2),

where nr is the number of variables in Fr , dr = deg Fr .

• Denote m = nr . Let a be a natural number, g(x) ∈ Z[x ],
deg g(x) < m,

|g(uj)| < p−(p−1)a, j = 1, . . . ,m,

where

uj = (1 + p)rj , a ≤ r1 < . . . < rm <
p + 1

2
a = b.

Then |g(1)| < p−m. (Interpolation)
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• If integers x1, . . . , xn satisfy

n∑
j=1

x
(p−1)ri
j ≡ 0 (mod p(p−1)a), 1 ≤ i ≤ m, then n > pm.

p - x1 · · · xn ⇒ xp−1j ≡ (1 + p)cj (mod p(p−1)a).

f (t) = tc1 + . . .+tcn , ϕ(t) = (t−u1) · · · (t−um), ui = (1+p)ri

g(t) = f (t)− ϕ(t)h(t), deg g(t) < m,

f (ui ) =
n∑

j=1

(1 + p)ricj ≡
n∑

j=1

x
(p−1)ri
j ≡ 0 (mod p(p−1)a)

|n| = |f (1)| ≤ max(|g(1)|, |ϕ(1)|) ≤ p−m.
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n >> d

• k = 1, . . . ,m

Hk(x) =
n∑

j=1

x
(p−1)(a+k)
j ·

n∑
j=1

x
(p−1)(b−k)
j , degHk = (p−1)(a+b)

a ≥ 4m + 2

p − 1
⇒ Hk have no common factors.

Fr+1(x1, . . . , xn) = Fr (H1, . . . ,Hm),

nr+1 = n > pnr , dr+1 = dr (p − 1)(a + b).

a ∼ 4m + 2

p − 1
⇒ dr+1 ∼ (2p + 6)drnr .
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n >> d

Corrected Artin's conjecture (Arhipov, Karacuba, 1981): A
form F (x) ∈ Qp[x1, . . . , xn] of degree d should have a non-trivial

p-adic zero as soon as n > d2 and p > d .

• J. Ax, S. Kochen, 1965: For every d there is a number p(d)
such that every form with n > d2 variables and p > p(d) has a

nontrivial p-adic zero.
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Algorithms

• Birch, Swinnerton-Dyer, 1962, computed (with computer) the

rank of the Mordell group for many elliptic curves. In these

computations they needed to decide if a given elliptic curve contains

a p-adic point.

An algorithm based on Hensel's lemma was used:

For any polynomial f (x) ∈ Z[x ] and integer a ∈ Z such that

|f (a)|p < |f ′(a)|2p

there exists a p-adic zero α of f (x) such that |α− a|p < 1.

The set of integer a that should be checked is �nite since |f (a)|p
and |f ′(a)|p can not be small simultaneously.
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Algorithms

• B.J. Birch, K. McCann, 1966: Let be F ∈ Z[x1, . . . , xn]. One
can compute an integer Dn(F ) with following property. Suppose

that |F (a)|p < |Dn(F )|p for some a = (a1, . . . , an) ∈ Zn, then there

is a vector α = (α1, . . . , αn) ∈ Zn
p such that F (α) = 0,

|α− a|p < 1. Moreover

Dn(F ) = O(ecd
4nn!(d+h(F ))).

Examples:
1. n = 1. Let be F (x) ∈ Z[x ] an irreducible polynomial,

|F (a)|p < |R|2p then there exists α ∈ Zp such that F (α) = 0 and

|α− a|p < 1. R = Res(F ,F ′)
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2. n = 2. F (x , y) = 0.

g1(x) = Resy (F (x , y),
∂F

∂y
), g2(y) = Resx(F (x , y),

∂F

∂x
)

|F (a1, a2)|p < |g1(a1)|2p ⇒ ∃ α2 ∈ Zp, F (a1, α2) = 0

|F (a1, a2)|p < |g2(a2)|2p ⇒ ∃ α1 ∈ Zp, F (α1, a2) = 0

In case

|g1(a1)|2p ≤ |F (a1, a2)|p, |g2(a2)|2p ≤ |F (a1, a2)|p
⇒ R = Res(F (x , y), g1(x), g2(y).

Some special cases if g1 ≡ 0 or g2 ≡ 0, or R ≡ 0.
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• A. Chistov, M. Karpinski, 1997, : In the case of systems

0 < Dn(F ) < 2d
2n(1+o(1))

h(F )

• Hensel :

|F (a)|p < |F ′(a)|2p ⇒ ∃α ∈ Zp, F (α) = 0, |α− a|p < 1

If F (x) be an irreducible polynomial then |F (x)|p and |F ′(x)|p can

not be small simultaneously at any point.

With this idea one can prove

|F (a)|p < e−8d(d+h) ⇒ ∃ α ∈ Zp, F (α) = 0, |α− a| < 1.
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Theorem 1. Let a = (a0, . . . , am) ∈ Zm+1 be a primitive vector

Fi (x0, . . . , xm), i = 1, . . . , n, be homogeneous polynomials,

I = (F1, . . . ,Fn) ⊂ Q[x0, . . . , xm], dim I = r − 1. If

ln |Fi (a)|p ≤ −c1 · d 2r (m−r+1)−1(d + h), i = 1, . . . , n,

where d , h are real numbers such that deg Fi ≤ d , h(Fi ) ≤ h, and
c1 is a positive constant depending only on m and r , then there

exists a vector α ∈ Zm+1
p such that

Fi (α) = 0 i = 1, . . . , n, and |α− a|p < 1.
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Corollary

Let a = (a0, . . . , am) ∈ Zm+1 be a primitive vector,

F (x0, . . . , xm) be a homogeneous polynomial. If

ln |F (a)| ≤ −c1 · d 2m−1(d + h),

where d , h are real numbers such that

deg F ≤ d , h(F ) ≤ h,

and c1 is a positive constant depending only on m, then there exists

a vector α ∈ Zm+1
p such that

F (α) = 0 and |α− a|p < 1.
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I ⊂ Q[x ] = Q[x0, . . . , xm], homogeneous ideal, associated prime

p1, . . . , ps ideals, unmixed ideals: dim I = dim pj , 1 ≤ j ≤ s.
uniqueness.

dim I , deg I , h(I ), |I (α)|, α ∈ Qm+1
p .

Theorem 2. Let I ⊂ Q[x0, . . . , xm] be homogeneous unmixed ideal,

dim I = r − 1 ≥ 0 and a = (a0, . . . , am) ∈ Zm+1 be such integer

vector that

ln |I (a)|p ≤ −c2r · (deg I )2
r−1(h(I ) + deg I ),

where c = c(m) > 0 is a su�ciently large constant depending only

on m. Then there exists a p-adic vector α ∈ Zm+1
p that is a zero of

I and |α− a|p < 1.
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Theorem 2 ⇒ Theorem 1.

Theorem 2 is proved by induction on dim I . Assume that

ln |I (a)|p ≤ −c4r · (deg I )2
r−1(h(I ) + deg I ), (1)

where c = c(m) > 0 be a su�ciently large constant, dim I = r − 1.
• Among pj there exists a prime p ⊂ Q[x0, . . . , xm], such that

ln |p(a)|p ≤ −c4r−1 · (deg p)2
r−1(h(p) + deg p). (2)
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Let I be homogeneous unmixed ideal of the ring Q[x ], dim I ≥ 0.
Let I = I1 ∩ . . . ∩ Is be irreducible primary decomposition, pj =

√
Ij

be radicals and kj be multiplicities of Ij . Let ω ∈ Cp
m+1, ω 6= 0.

Then

1)

s∑
j=1

kj deg pj = deg I ;

2)

s∑
j=1

kjh(pj) ≤ h(I ) + m2 deg I ;

3)

s∑
j=1

kj log | pj(ω) |p= log | I (ω) |p.
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• There are polynomials Q1, . . . ,Qt ∈ p,

degQj ≤ r deg p, h(Qj) ≤ h(p) + m2 deg p. (3)

Projective varieties of p and θ(p) = (Q1, . . . ,Qt) coincide. The

ideal θ(p) has unique isolated primary component, it equals to p.

• Rank of the matrix (
∂Qi

∂xj

)
1≤i≤t, 0≤j≤m

, (4)

modulo p equals m − r + 1.

∆(x) is a minor of the size m − r + 1 that does not belong to p.
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In case

ln |∆(a)| < −c4r−2 · (deg p)2
r−1(h(p) + deg p)

one can construct an unmixed ideal J ⊂ Q[x0, . . . , xm],
dim J = r − 2 such that

deg J ≤ m2 deg2 p

h(J) ≤ 7m4 deg p(h(p) + deg p).

ln |J(a)| ≤ −c4r−3 · (deg p)2
r−1(h(p) + deg p) ≤

≤ −c4r−4 · (deg J)2
r−1−1(h(J) + deg J).

and V (J) ⊂ V (p).
Induction assumption is applied to J.
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• In case

ln |∆(a)| ≥ −c4r−2 · (deg p)2
r−1(h(p) + deg p).

one can use the Hensel lemma and to prove the existence of p-adic
zero for p.

Conjecture: Right hand side of

ln |Fi (a)|p ≤ −c1 · d 2m−1(d + h), i = 1, . . . , n,

should be improved to

−c1 · d m(d + h)

.
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