COCYCLES, GALOIS THEORY AND AUTOMORPHIC FORMS

Hans Opolka

Abstract: This is a report about connections between central simple algebras, Ga-
lois representations and automorphic forms, with some emphasis on finite Heisenberg
groups with Galois action.

81. Regular crossed products and Galois representations

At first we describe a simple construction which leads to a connection be-
tween central simple algebras over a field which satisfies a certain cohomological
condition and representations of the absolute Galois group of that field; see [O3]
for a preliminary report about this connection..

Let k be a field with a separable algebraic closure k. For every subextension
K/kof k/k let G = G(k/K) denote the profinite Galois group of the extension
k/K and denote by ux the group of roots of unity in K. For every positive
integer m let u,, denote the group of m-th roots of unity in k. As was shown
in [B], §6, Satz 10, every associative finite dimensional central simple k-algebra
A such that the characteristic of k& does not divide the exponent of A is similar
to a crossed product (K/k,c) where K/k is a finite Galois subextension of k/k
- with Galois group G = G(K/k) say - and where ¢ : G X G — iy, — ux is
a Galois 2-cocycle for some positive integer m. Adopting a terminology from
[B], §2, such a crossed product is called regular. Note that according to [B], §4,
Satz 7, the embedding problem for G which arises from the group extension
which is defined by the cocycle ¢ : G x G — pu,, is solvable if and only if the
similarity class of (K/k,c) is trivial in the Brauer group Br(k) of k. Many of
the considerations in [B] which are formulated in terms of algebras and group
extensions, especially those which are related to embedding problems, can be
translated into simple cohomological terms; comp. e.g. [HO], especially section
1.

Assume now that the characteristic of k is 0 and that (K/k,c) is a regular
crossed product. Denote by m = m(c) the order of ¢, i.e. the smallest positive
integer j such that c(s,t)? = 1 for all 5,t € G = G(K/k). We will construct a
set R(K/k,c) of isomorphism classes of continuous irreducible representations
R: Gy — GL(n,C) - where Gy, is regarded as a topological group with respect
to the profinite topology and where GL(n, C) is regarded as a topological group
with respect to the discrete topology - under the assumption that the cohomol-
ogy group H?(G s, Q/Z) is trivial for every finite abelian subextension M /k of
k/k. Tt is well known that this assumption holds if & is a local or global number
field, see [T]; [SE1], §6; and - of course - it holds if k is a field of cohomological
dimension < 1; see [SE4], II, §3, especially 3.3 for examples. In order to con-
struct R(K/k,c) put Gp, := G(K/k(ftm)), ¢m := restriction of ¢ to Gy, X G
SO Cm ¢ Gy X Gy — i 18 a central 2-cocycle with trivial action of G,,,. Identify
Lm With the group of roots of unity of order m in C. Let T : G, — GL(n,C)
be any continuous irreducible ¢,,-representation of G,,, comp.[M] for the ter-
minology; so we have T'(s)T'(t) = ¢ (s, t)T(st) for all s,t € G,,. It follows from



the assumed triviality of H? (Gk(um)> Q/Z) that T has a lifting, i.e. that there
is a continuous irreducible linear representation D : Gy,,.y — GL(n,C) such
that the corresponding projective representations D and T coincide, comp. e.g.
[SE1], §6. Denote by Rp the set of all isomorphism classes of continuous irre-
ducible linear representations R of G, of finite degree such that the restriction of
R to Gy, contains D as an irreducible constitutent, and let R(K/k, c¢) denote
the union of all the sets Rp where D is any continuous linear representation of
Gr(u,n) of finite degree which lifts an irreducible ¢,,-representation of G,. Using
the Clifford-Mackey theory, comp. [CL] and [M], one proves that the degree of
every (R) € R(K/k,c) divides the degree (K : k). Finally, for every similarity
class a of central simple k-algebras denote by R(k,a) the union of all the sets
R(K/k,c) where (K/k,c) is any regular crossed product representing a.

82. Regular crossed products and Galois representations in the
case of number fields

Let k£ be a number field. A continuous linear or projective representation
D of Gy, over k of finite degree is said to be unramified outside a given finite
set of places S of k, if for all places of k which do not belong to S the corre-
sponding inertia subgroups are contained in the kernel of D. As is well known,
the following result can be deduced - by applying the nonabelian version of the
”Fiihrerdiskriminantenproduktformel” [S2], VI, §3, Cor.2, p. 104 -

from a result of 1. Schur [S] which shows that the order of a finite subgroup
G of GL(n,C) such that the traces of all elements of G belong to a fixed subfield
E C C of finite degree d = (E : Q) divides a certain number which depends
only on n and d

and from a variant of the well known result of Hermite and Minkowski, see
e.g. [K], Satz 2.13.6, S. 57, according to which there are only finitely many
number fields with a given discriminant;

comp. e.g. [J], Satz (1.5), p. 10.

(2.1) Proposition Let k be a number field, let S be a finite set of places
of k, let n be a positive integer and let E C C be a subfield of finite degree
(E : Q). Then there are only finitely many isomorphism classes of continuous
linear representations R : Gy — GL(n,C) such that R is unramified outside S
and such that all values of the character of R belong to E.

In view of this result it seems worthwhile to investigate for a number field
k rationality and ramification properties of representations of Gy which are
constructed from regular crossed products as above. Similar investigations for
related classes of representations are contained in [J]; see §4 below for more
details.

Assume that k is a number field and that A is a central simple algebra over
k. Denote by S4 the finite set of places of k£ at which A does not split. Let
(K/k,c) be a regular crossed product which is similar to .A. Denote by Sk p,
the finite set of all places which are ramified in K/k. Since all values of ¢ are
roots of unity it follows from the local theory of central simple algebras, see



e.g. [D], VII, §2, especially Satz 3, p.112, that A splits at all places which
are unramified in K/k. So we have Sa4 C Sk . It was observed by Hasse [H],
see also [D], VII, Satz 4, S. 118, that there is a smallest multiple g = g(A)
of the exponent exp(A) of A such that k(ug) is a splitting field of A; namely,
by the local theory of central simple algebras and by the local-global principle
for central simple algebras, see [D], VII, §5, Satz 1, p. 117, g is the smallest
positive multiple of the exponent of A such that the local degrees (K, (g) : kv)
are divisible by exp(A) for all v € S4. Let m = m(c) denote the order of c.
Define the cyclotomic index g := g(K/k,c) of (K/k,c) by l.c.m.(m(c),g(A)) if
m is odd and by l.c.m.(4.m(c), g(A)) if m is even. Using the profinite version of
the exact Hochschild-Serre sequence, see e.g. [SH],chapter II, §4, and results
in [P], section 2, one can prove

(2.2) Proposition There is (R) € R(K/k,c) such that all values of the
character of R belong to the field Q(texp(G (K /k)).5(K /k.c))-

In order to obtain representations in R(K/k,¢) with restricted ramification
we introduce certain statements which are known to be true in special cases.
For every positive integer e denote by S, the set consisting of all infinite places
of k and of all places of k which divide e, and for every finite set of places S of
k let ks/k denote the maximal Galois subextension of k/k which is unramified
outside S.

(2.3) Let g be a prime number, let S denote a finite set of places of k
which contains Sq and let L(S,q) denote the statement that the cohomology
group H?(G(ks/k),Qq/Z,) vanishes for every finite abelian subextension M /k
of ks/k. Furthermore, denote by L(k) the statement that L(S,q) holds for every
prime number q and every finite set of places S O S,.

It is known that statement L(k), which is related to the Leopoldt-conjecture,
is true for k = Q; see [BR] in connection with [M K].

Assume that S is a finite set of places of k containing S, U Sk/,. Then
if statement L(k) is true there is a smallest multiple [ = [(K/k,c¢) of m with
the same prime divisors as m such that the central embedding problem for
G (ks /k(pm)) which is defined by the cocycle class (¢,,) € H?(Gpm, pim) is weakly
solvable with respect to [, i.e. the central embedding problem for G(ks/k(iim))
corresponding to the image of (¢;;,) under the homomorphism (of cohomology
groups with respect to the trivial group action)

H2(Gpy pom) — H?*(Gon, ) induced by g, —

is solvable, comp. [NO].
For any continuous representation R of G denote by Sg the set of all places
of k which are ramified in the fixed field of the kernel of R.



(2.4) Proposition If the statement L(k) is true then there is (R) € R(K/k, c)
such that Sr C Sy, U Sk i and such that all values of the character of R belong

to Q(texp(@).i(K /k.c))-

83. Finite Galois modules, Heisenberg groups and regular crossed
products

If f: Ax A— C is a central 2-cocycle on an abelian group A with values
in an abelian group C' then, as was observed in [IM], §1, p. 132, the mapping
wr: AxA— C,ws(z,y) = f(z,y)/f(y,z) for all z,y € A, is a bimultiplicative
symplectic pairing; we call it the symplectic pairing associated with f.

Let k be a number field. Let A be a finite continuous Gj-module which is
equipped with a Gy-equivariant central 2-cocycle f : A x A — u,, such that the
associated symplectic pairing w; is nondegenerate. Denote by H (A, f) the cen-
tral group extension defined by f, the so called Heisenberg group corresponding
to (A, f); H(A, f) becomes a Gj-group by defining s((«, z)) := (s(a), s(z)) for
all @ € p,x € A and s € Gi. The exact sequence of Gg-groups

1= pum—HA f)— A1

yields a coboundary map
Hl(Gkv A) i HQ(Gkv ,um)v

and therefore every cocycle class (o) € H*(Gy, A) defines a unique element
in the Brauer group Br(k) of k which can be represented by a regular crossed
product (K(4)/k,c), where K, is a finite Galois splitting field of (a) and
where ¢ = ¢(a),5 1 G(a) X G(a) = #m C HK,, Is a Galois 2-cocycle on G, :=
G(K(q)/k) all of whose values belong to pn,. Put R s = R(K@)/k,c).
Denote by K 4 the fixed field of the kernel of the action of Gy on A. We assume

(3.1) p:= Tesg’;A () € Hom(Gg ., A)GEAIR) is surjective.

It is easily seen that there is (o) € H'(Gy, A) satisfying (3.1) provided
H?(G(Ka/k), A) vanishes. In fact, according to [[ K] there is a surjective solu-
tion ¢ of the embedding problem for G which is defined by the semidirect prod-
uct of the G(K 4/k)-module A with G(K 4/k). The restriction of ¢ to G, yields
a surjective p € Hom(G g, A)¢Fa/k) Moreover, if H?(G(Ka/k), A) vanishes,
the exact Hochschild-Serre sequence shows that there is (o) € H'(Gj, A) such
that p = resg’;A ((«)). The construction of the set R(q4).5 shows that there is
some (R) € R(q),s from which the action of G, on A can be reconstructed.

A variant of this construction is obtained by starting from a nondegenerate
G-equivariant nondegenerate bimultiplicative pairing f : A X B — i, of finite
continuous Gg-modules and by using the cup product

HY (G, A) x HY(Gyp.B) — H?(Gr, pim) — Br(k)



whose image consists of similarity classes of central simple k-algebras which
can be represented by regular crossed products. This approach seems to be
more adapted to the situation where f is the Poincaré duality pairing of finite
level étale cohomology groups of a smooth projective variety defined over k.

Examples of Gi-modules A with trivial H?(G(Ka/k), A) arise naturally in
the theory of elliptic curves; see [SE3], especially examples 5.5.6 and 5.5.7, in
connection with a result of Sah in group cohomology; comp. e.g. [LG], chapter
V. The case of elliptic curves is also discussed in more detail in §4 below, example
2.

Representations similar to those in R4y, s have been constructed in [O1] by a
different method and were investigated further in [J]. The algebraic framework
is familiar from the construction of representations of Heisenberg groups and
the associated metaplectic groups; comp. e.g. [W] and also [Z].

84. Examples
Let k£ be a number field. In this section we describe various examples which
illustrate the constructions above.

(1) Central pairs and Galois representations ; comp. [02] for a related
construction.

Let A be a finite abelian group and let f : Ax A — k* be a central 2-cocycle.
(A, f) is called a central pair for k.

As can be seen from E. Artin’s construction of Clifford algebras in [A] ,chapter
V, section 4, p. 186ff, central pairs arise naturally in the theory of quadratic
forms.

Another example of a central pair for the cyclotomic field k = Q(un,) is
obtained as follows. Assume that ¢t : A x A — pu,, is a central 2-cocycle such
that the associated symplectic pairing w = w; is nondegenerate. Let g denote
the conductor of A, i.e. ¢ is the smallest positive integer h such that there
is an epimorphism G(Q(e?>"*/")/Q) — A. For every character y of A, viewed
as a character of G(Q(e?™/9)/Q), denote by 7(x) the corresponding Gaussian
sum; for the terminology and elementary results on Gaussian sums comp. [LE],
§2. Furthermore, for every x € A let x, denote the character of A given by
Xz (Y) :=w(z,y), y € A. Then (A, f), where

frAX A=K, f(x,y)=tx,y)7(X2)T(Xy)T(XaXxy) for all z,y € A,

is a central pair.

We assume now that k is a number field.

Let (A, f) be a central pair for k with the following properties:

(a) The symplectic pairing wy : A x A — k* associated with f is nondegen-
erate; so especially all values of wy belong to u,, where m is the exponent of A
and p,, C k*.

(b) The central pair (A, f) is full, which means that the following conditions
(i) and (ii) hold:



(i) There is a map ay : A — & such that as(z)°rd®) = H?idl(x) f(x,27) for
allz € A

(ii) The degree of every ay(z), x € A, over k is the order ord(z) of z, and
the degree of the extension ky/k which is generated over k by all ay(x), z € A,
is the order of A.

Assume that (A, f) is a full central pair over the number field k. Then if we
consider A as a trivial Gg-module, the composition of maps

a:Gkﬁuzl\lA,

where ((s)(z) 1= s(as(z))/af(z) for all s € Gy, © € A,and where for every
A € A the element y(A) := zx € A is such that A\(y) = wy(za,y) for all y € A,
defines a surjective homomorphism

(o) € HY(Gg, A) = Hom(Gy,, A)

with the property k() = ky. Let fo : AX A — p, denote a central 2-cocycle
such that wy = wy,. Then by the general construction in §3 the set R(q),y, 18
defined. One can prove

(4.1) Proposition The character group ék acts transitvely on Rq),z,- Ev-

ery (R) € Ra),f, has degree |A|Y2 . If statement L(k) holds then there is
(R) € Ra),f, such that Sr C {v : v divides m, v divides ay(x) for all x € A,
v divides oo}, and such that all values of the character of R belong to Q(w)
where 1 = (K (o) /k, (o), f,)-

Moreover, following [O2], the results on automorphic induction in [AC] im-
ply the following proposition (Ax denotes the adele ring of a number field K).

(4.2) Proposition Assume that the exponent of A is a prime number. Then
every (R) € Ra),, 15 cuspidal automorphic in the sense of [L]. More pre-
cisely, the cuspidal automorphic representation corresponding to (R) € R(qa),f,
is automorphically induced in the sense of [AC] by a continuous character X
of GL(1,An) of finite order where M C kyf is the fized field corresponding
to a mazimal w-isotropic subgroup of A under the isomorphism G(ky/k) =2 A
which is induced by the epimorphism « : G — A constructed above; and the
character \ corresponds under the Artin map GL(1,Ap) — GSY (see [AT)) to
a continuous character \ of Gas such that the restriction of X to G, 1is the
central character vg of (R), i.e. vr is the unique irreducible constituent of the
restriction of R to Gy,.



In the special case A 22 Z/2 x Z/2 the classical modular forms corresponding
to the cuspidal automorphic representations include examples constructed by
E. Hecke [HE] from indefinite binary quadratic forms; see [O2], section 4, and
the literature mentioned there. Moreover for general A it can be shown that
there is (R) € R(qa),f, such that R and the corresponding cuspidal automor-
phic representation can be decomposed as an outer tensor product of so called
hyperbolic representations where the underlying A s are of type Z/m x Z/m.

(2) Elliptic curves and Galois representations; comp. [O1], [J].

.Let X be an elliptic curve defined over k. For any positive integer m denote
by X, the kernel of the multiplication by m homomorphism X (k) = X (k).
The Weil-pairing w = wy, @ Xy X Xin — 1S a nondegenerate bilinear
Gr-equivariant symplectic pairing, see e.g. [C] or [LG]. Let f : Ax A —
im be a central 2-cocycle such that f(z,y)/f(y,z) = w(z,y), x,y € A. As-
sume that f is Gg-equivariant. Every k-rational point P € X (k) \ mX (k) de-
fines an element A(P) € HY (G, X1n), A(P)(s) := s(Q) — Q for all s € Gy,
where Q € X (k) is such that m@Q = P. If the restriction A(P) €
Hom(Gk(Xm),Xm)G(k(Xm)/k) is surjective, then, according to the above con-
struction, the rational point P defines the set Rp s := Rsa(p)),s of isomor-
phism classes of continuous irreducible representations of Gx. Kummer theory
for elliptic curves as developed in [BK] and [LG], chapter V, yields examples
with surjective A(P)|g, ,,,- We remark that if statement L(k) holds then the
set R p ¢ contains the isomorphism class of a representation which is unramified
outside the finite set of places which consists of all places above m and infinity
and all places where the elliptic curve has bad reduction; comp. [J], sections
4.2-4.4.

The construction of an odd 2-dimensional Galois representation of octahedral
type of Artin-conductor 592 in [H A] makes also use - at least implicitly - of an
elliptic curve, namely X : y? = 2% 4+ 2z — 1. And the construction and thorough
investigation of odd 2-dimensional Galois representations of Gg of octaedral
type in [BF] and [BU] is based on elliptic curves X over Q and nontrivial
elements in H'(Gg, X2) which are interpreted in terms of 2-coverings of X .
For the theory of m-coverings of elliptic curves see [BS] and [C]. It offers a
more geometric view of our construction.

|Gr(xm)

References

[A] E. Artin: Geometric algebra, Interscience, New York, 1957

[AT] E. Artin, J. Tate: Class field theory, Benjamin, New York, 1967

[AC] J. Arthur, L. Clozel: Simple algebras, base change and the advanced
theory of the trace formula, Annals of Mathematics Studies 120, Princeton
University Press, New Jersey, 1989

[BK] M.I. Bashmakov: The cohomology of Abelian varieties over a number
field, Russian Mathematical Surveys, 27, 1972, 2, 25-70

[B] R. Brauer: Uber die Konstruktion der Schiefkérper, die von endlichem
Rang in bezug auf ein gegebenes Zentrum sind, JRAM, 168, 1932, 44-64



[BR] A. Brumer: On the units of algebraic number fields, Mathematica, 14,
1967, 121-124

[BF] P. Bayer, G. Frey: Galois representations of octahedral type and 2-
coverings of elliptic curves, Mathematische Zeitschrift, 207, 1991, 395-408

[BU] M. Bungert: Konstruktion von Modulformen niedrigen Gewichts, Pre-
print Serie, Institut fiir experimentelle Mathematik Essen, 12, 1990

[BS] B.J. Birch, H.P.F. Swinnerton-Dyer: Notes on elliptic curves I, JRAM,
212, 1963, 7-25

[C] J.W.S. Cassels: Diophantine equations with special reference to elliptic
curves, J. London Math. Soc., 41, 1966, 193-291

[CL] A.H. Clifford: Representations induced in an invariant subgroup, An-
nals of Mathematics, 38, 1937, 533-550

[D] M. Deuring: Algebren, Springer Verlag, Berlin, 1935

[HA] K. Haberland: Perioden von Modulformen einer Variablen und Grup-
penkohomologie III, Mathematische Nachrichten, 112, 1983, 297-315

[H] H. Hasse: Die Struktur der R. Brauerschen Algebrenklassengruppe iiber
einem algebraischen Zahlkorper, Math. Ann., 107, 1933, 731-760

[HE] E. Hecke: Uber einen Zusammenhang zwischen elliptischen Modul-
funktionen und indefiniten quadratischen Formen, in: Mathematische Werke,
Vandenhoeck und Ruprecht, Gottingen, 1959, No. 22, 1925, pp.418-427

[HO] K. Hoechsmann: Zum Einbettungsproblem, JRAM (Crelle Journal),
229, 1968, 81-106

[IK] M. Tkeda: Zur Existenz eigentlicher galoisscher Korper beim Einbet-
tungsproblem, Abh. Math. Seminar der Univ. Hamburg, 24, 1960, 126-131

[IM] N. Iwahori, H. Matsumoto: Several remarks on projective represen-
tations of finite groups, Journal of the Faculty of Science of the University of
Tokyo, Sect. I, 10, 1964, 129-146

[J] F. Jonas: Galoisdarstellungen und Einbettungsprobleme mit beschrankter
Verzweigung, Dissertation, Universitdt Gottingen, 1991

[K] H. Koch: Zahlentheorie, Vieweg Verlag, Braunschweig/Wiesbaden, 1997

[LG] S. Lang: Elliptic curves diophantine analysis, Springer, Berlin, 1978

[L] R.P. Langlands: Problems in the theory of automorphic forms, in: Lec-
tures in modern analysis and applications, LNM 170, Springer Verlag, New
York, 1970

[LE] HW. Leopoldt: Zur Geschlechtertheorie in abelschen Zahlkorpern,
Math. Nachrichten, 9, 1953, 351-362

[M] G. W. Mackey: Unitary representations of group extensions I, Acta
Mathematica, 99, 1958, 265-311

[M K] K. Miyake: Leopoldt kernels and central extensions of numbert fields,
Nagoya Math. J., 120, 1990, 67-76

[NO] Q. D. Th. Nguyen, H. Opolka: Numerical invariants of central embed-
ding problems, Journal of Number Theory, 52, 1995, 7-16

[O1] H. Opolka: Galoisdarstellungen und Galoiskohomologie von Zahlkérpern,
Schriftenreihe des Mathematischen Instituts der Universitdt Miinster, 2. Serie,
Heft 27, Februar 1983



[O2] H. Opolka: Central pairs, Galois theory and automorphic forms, Alge-
bras and Representation Theory, 6, 2003, 449-459

[O3] H. Opolka: Central simple algebras and Galois representations,

http://digibib.tu-bs.de/?docid=00028816, July 2009

[P] G. Poitou: Conditions globales pour des probleémes de plongement &
noyau abélien, Annales de L’Institut Fourier, XXIX, 1979, 1-14

[S] I. Schur: Uber eine Klasse von endlichen Gruppen linearer Substitutio-
nen, Nr. 6 der Ges. Abh., Springer Verlag, Berlin, 1973

[SE1] J.P. Serre: Modular forms of weight one and Galois representations,
in: A. Frohlich (ed.): Algebraic number fields, Academic Press, New York, 1977;
pp. 193-268

[SE2] J.P. Serre: Local fields, Springer Verlag, New York, 1979

[SE3] J.P. Serre: Propriete galoisiennes des points d’ordre fini des courbes
elliptiques, Inventiones Mathematicae, 15, 1972, 259-331

[SE4] J. P. Serre: Galois cohomology, Springer Verlag, Berlin, 1997

[SH] S.S. Shatz: Profinite groups, arithmetic and geometry, Annals of Math-
ematics Studies, Princeton University Press, 1972

[T] J. Tate: Duality theorems in Galois cohomology over number fields,
Proceedings of the International Congress of Mathematicians, Stockholm, 1962,
288-295

[W] A. Weil: Sur certains groupes d’operateurs unitaires, Acta Mathematica,
111, 1964, 143-211

[Z] E. W. Zink: Weil Darstellungen und lokale Galoistheorie, Mathematische
Nachrichten, 92, 1979, 265-288



