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Hans Opolka

Abstract: This is a report about connections between central simple algebras, Ga-

lois representations and automorphic forms, with some emphasis on finite Heisenberg

groups with Galois action.

§1. Regular crossed products and Galois representations

At first we describe a simple construction which leads to a connection be-
tween central simple algebras over a field which satisfies a certain cohomological
condition and representations of the absolute Galois group of that field; see [O3]
for a preliminary report about this connection..

Let k be a field with a separable algebraic closure k. For every subextension
K/k of k/k let GK = G(k/K) denote the profinite Galois group of the extension
k/K and denote by µK the group of roots of unity in K. For every positive
integer m let µm denote the group of m-th roots of unity in k. As was shown
in [B], §6, Satz 10, every associative finite dimensional central simple k-algebra
A such that the characteristic of k does not divide the exponent of A is similar
to a crossed product (K/k, c) where K/k is a finite Galois subextension of k/k
- with Galois group G = G(K/k) say - and where c : G × G → µm →֒ µK is
a Galois 2-cocycle for some positive integer m. Adopting a terminology from
[B], §2, such a crossed product is called regular. Note that according to [B], §4,
Satz 7, the embedding problem for Gk which arises from the group extension
which is defined by the cocycle c : G × G → µm is solvable if and only if the
similarity class of (K/k, c) is trivial in the Brauer group Br(k) of k. Many of
the considerations in [B] which are formulated in terms of algebras and group
extensions, especially those which are related to embedding problems, can be
translated into simple cohomological terms; comp. e.g. [HO], especially section
1.

Assume now that the characteristic of k is 0 and that (K/k, c) is a regular
crossed product. Denote by m = m(c) the order of c, i.e. the smallest positive
integer j such that c(s, t)j = 1 for all s, t ∈ G = G(K/k). We will construct a
set R(K/k, c) of isomorphism classes of continuous irreducible representations
R : Gk → GL(n, C) - where Gk is regarded as a topological group with respect
to the profinite topology and where GL(n, C) is regarded as a topological group
with respect to the discrete topology - under the assumption that the cohomol-
ogy group H2(GM , Q/Z) is trivial for every finite abelian subextension M/k of
k/k. It is well known that this assumption holds if k is a local or global number
field, see [T ]; [SE1], §6; and - of course - it holds if k is a field of cohomological
dimension ≤ 1; see [SE4], II, §3, especially 3.3 for examples. In order to con-
struct R(K/k, c) put Gm := G(K/k(µm)), cm := restriction of c to Gm × Gm;
so cm : Gm×Gm → µm is a central 2-cocycle with trivial action of Gm. Identify
µm with the group of roots of unity of order m in C. Let T : Gm → GL(n, C)
be any continuous irreducible cm-representation of Gm, comp.[M ] for the ter-
minology; so we have T (s)T (t) = cm(s, t)T (st) for all s, t ∈ Gm. It follows from
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the assumed triviality of H2(Gk(µm), Q/Z) that T has a lifting, i.e. that there
is a continuous irreducible linear representation D : Gk(µm) → GL(n, C) such

that the corresponding projective representations D and T coincide, comp. e.g.
[SE1], §6. Denote by RD the set of all isomorphism classes of continuous irre-
ducible linear representations R of Gk of finite degree such that the restriction of
R to Gk(µm) contains D as an irreducible constitutent, and let R(K/k, c) denote
the union of all the sets RD where D is any continuous linear representation of
Gk(µm) of finite degree which lifts an irreducible cm-representation of Gm. Using
the Clifford-Mackey theory, comp. [CL] and [M ] , one proves that the degree of
every (R) ∈ R(K/k, c) divides the degree (K : k). Finally, for every similarity
class a of central simple k-algebras denote by R(k, a) the union of all the sets
R(K/k, c) where (K/k, c) is any regular crossed product representing a.

§2. Regular crossed products and Galois representations in the

case of number fields

Let k be a number field. A continuous linear or projective representation
D of Gk over k of finite degree is said to be unramified outside a given finite
set of places S of k, if for all places of k which do not belong to S the corre-
sponding inertia subgroups are contained in the kernel of D. As is well known,
the following result can be deduced - by applying the nonabelian version of the
”Führerdiskriminantenproduktformel” [S2], VI, §3, Cor.2, p. 104 -

from a result of I. Schur [S] which shows that the order of a finite subgroup
G of GL(n, C) such that the traces of all elements of G belong to a fixed subfield
E ⊂ C of finite degree d = (E : Q) divides a certain number which depends
only on n and d

and from a variant of the well known result of Hermite and Minkowski, see
e.g. [K] , Satz 2.13.6, S. 57, according to which there are only finitely many
number fields with a given discriminant;

comp. e.g. [J ], Satz (1.5), p. 10.

(2.1) Proposition Let k be a number field, let S be a finite set of places
of k, let n be a positive integer and let E ⊂ C be a subfield of finite degree
(E : Q). Then there are only finitely many isomorphism classes of continuous
linear representations R : Gk → GL(n, C) such that R is unramified outside S
and such that all values of the character of R belong to E.

In view of this result it seems worthwhile to investigate for a number field
k rationality and ramification properties of representations of Gk which are
constructed from regular crossed products as above. Similar investigations for
related classes of representations are contained in [J ]; see §4 below for more
details.

Assume that k is a number field and that A is a central simple algebra over
k. Denote by SA the finite set of places of k at which A does not split. Let
(K/k, c) be a regular crossed product which is similar to A. Denote by SK/k

the finite set of all places which are ramified in K/k. Since all values of c are
roots of unity it follows from the local theory of central simple algebras, see
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e.g. [D] , VII, §2, especially Satz 3, p.112, that A splits at all places which
are unramified in K/k. So we have SA ⊂ SK/k. It was observed by Hasse [H ] ,
see also [D] , VII, Satz 4, S. 118, that there is a smallest multiple g = g(A)
of the exponent exp(A) of A such that k(µg) is a splitting field of A; namely,
by the local theory of central simple algebras and by the local-global principle
for central simple algebras, see [D] , VII, §5, Satz 1, p. 117, g is the smallest
positive multiple of the exponent of A such that the local degrees (kv(µg) : kv)
are divisible by exp(A) for all v ∈ SA. Let m = m(c) denote the order of c.
Define the cyclotomic index g̃ := g̃(K/k, c) of (K/k, c) by l.c.m.(m(c), g(A)) if
m is odd and by l.c.m.(4.m(c), g(A)) if m is even. Using the profinite version of
the exact Hochschild-Serre sequence, see e.g. [SH ] ,chapter II, §4, and results
in [P ] , section 2, one can prove

(2.2) Proposition There is (R) ∈ R(K/k, c) such that all values of the
character of R belong to the field Q(µexp(G(K/k)).g̃(K/k,c)).

In order to obtain representations in R(K/k, c) with restricted ramification
we introduce certain statements which are known to be true in special cases.
For every positive integer e denote by Se the set consisting of all infinite places
of k and of all places of k which divide e, and for every finite set of places S of
k let kS/k denote the maximal Galois subextension of k/k which is unramified
outside S.

(2.3) Let q be a prime number, let S denote a finite set of places of k
which contains Sq and let L(S, q) denote the statement that the cohomology
group H2(G(kS/k), Qq/Zq) vanishes for every finite abelian subextension M/k
of kS/k. Furthermore, denote by L(k) the statement that L(S, q) holds for every
prime number q and every finite set of places S ⊃ Sq.

It is known that statement L(k), which is related to the Leopoldt-conjecture,
is true for k = Q; see [BR] in connection with [MK].

Assume that S is a finite set of places of k containing Sm ∪ SK/k. Then
if statement L(k) is true there is a smallest multiple l = l(K/k, c) of m with
the same prime divisors as m such that the central embedding problem for
G(kS/k(µm)) which is defined by the cocycle class (cm) ∈ H2(Gm, µm) is weakly
solvable with respect to l, i.e. the central embedding problem for G(kS/k(µm))
corresponding to the image of (cm) under the homomorphism (of cohomology
groups with respect to the trivial group action)

H2(Gm, µm) → H2(Gm, µl) induced by µm →֒ µl

is solvable, comp. [NO].
For any continuous representation R of Gk denote by SR the set of all places

of k which are ramified in the fixed field of the kernel of R.
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(2.4) Proposition If the statement L(k) is true then there is (R) ∈ R(K/k, c)
such that SR ⊂ Sm ∪SK/k and such that all values of the character of R belong
to Q(µexp(G).l(K/k,c)).

§3. Finite Galois modules, Heisenberg groups and regular crossed

products

If f : A × A → C is a central 2-cocycle on an abelian group A with values
in an abelian group C then, as was observed in [IM ], §1, p. 132, the mapping
ωf : A×A → C, ωf (x, y) := f(x, y)/f(y, x) for all x, y ∈ A, is a bimultiplicative
symplectic pairing; we call it the symplectic pairing associated with f .

Let k be a number field. Let A be a finite continuous Gk-module which is
equipped with a Gk-equivariant central 2-cocycle f : A×A → µm such that the
associated symplectic pairing ωf is nondegenerate. Denote by H(A, f) the cen-
tral group extension defined by f , the so called Heisenberg group corresponding
to (A, f); H(A, f) becomes a Gk-group by defining s((α, x)) := (s(α), s(x)) for
all α ∈ µm, x ∈ A and s ∈ Gk. The exact sequence of Gk-groups

1 → µm → H(A, f) → A → 1

yields a coboundary map

H1(Gk, A)
δ
→ H2(Gk, µm),

and therefore every cocycle class (α) ∈ H1(Gk, A) defines a unique element
in the Brauer group Br(k) of k which can be represented by a regular crossed
product (K(α)/k, c), where K(α) is a finite Galois splitting field of (α) and
where c = c(α),f : G(α) × G(α) → µm ⊂ µK(α)

is a Galois 2-cocycle on G(α) :=
G(K(α)/k) all of whose values belong to µm. Put R(α),f := R(K(α)/k, c).
Denote by KA the fixed field of the kernel of the action of Gk on A. We assume

(3.1) ρ := resGk

GKA
((α)) ∈ Hom(GKA

, A)G(KA/k) is surjective.

It is easily seen that there is (α) ∈ H1(Gk, A) satisfying (3.1) provided
H2(G(KA/k), A) vanishes. In fact, according to [IK] there is a surjective solu-
tion φ of the embedding problem for Gk which is defined by the semidirect prod-
uct of the G(KA/k)-module A with G(KA/k). The restriction of φ to GKA

yields
a surjective ρ ∈ Hom(GKA

, A)G(KA/k). Moreover, if H2(G(KA/k), A) vanishes,
the exact Hochschild-Serre sequence shows that there is (α) ∈ H1(Gk, A) such
that ρ = resGk

GKA
((α)). The construction of the set R(α).f shows that there is

some (R) ∈ R(α),f from which the action of Gk on A can be reconstructed.
A variant of this construction is obtained by starting from a nondegenerate

Gk-equivariant nondegenerate bimultiplicative pairing f : A×B → µm of finite
continuous Gk-modules and by using the cup product

H1(Gk, A) × H1(Gk.B) → H2(Gk, µm) →֒ Br(k)
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whose image consists of similarity classes of central simple k-algebras which
can be represented by regular crossed products. This approach seems to be
more adapted to the situation where f is the Poincaré duality pairing of finite
level étale cohomology groups of a smooth projective variety defined over k.

Examples of Gk-modules A with trivial H2(G(KA/k), A) arise naturally in
the theory of elliptic curves; see [SE3] , especially examples 5.5.6 and 5.5.7, in
connection with a result of Sah in group cohomology; comp. e.g. [LG], chapter
V. The case of elliptic curves is also discussed in more detail in §4 below, example
2.

Representations similar to those in R(α),f have been constructed in [O1] by a
different method and were investigated further in [J ]. The algebraic framework
is familiar from the construction of representations of Heisenberg groups and
the associated metaplectic groups; comp. e.g. [W ] and also [Z] .

§4. Examples

Let k be a number field. In this section we describe various examples which
illustrate the constructions above.

(1) Central pairs and Galois representations ; comp. [O2] for a related
construction.

Let A be a finite abelian group and let f : A×A → k∗ be a central 2-cocycle.
(A, f) is called a central pair for k.

As can be seen from E. Artin’s construction of Clifford algebras in [A] ,chapter
V, section 4, p. 186ff, central pairs arise naturally in the theory of quadratic
forms.

Another example of a central pair for the cyclotomic field k = Q(µm) is
obtained as follows. Assume that t : A × A → µm is a central 2-cocycle such
that the associated symplectic pairing ω = ωt is nondegenerate. Let g denote
the conductor of A, i.e. g is the smallest positive integer h such that there
is an epimorphism G(Q(e2πi/h)/Q) → A. For every character χ of A, viewed
as a character of G(Q(e2πi/g)/Q), denote by τ(χ) the corresponding Gaussian
sum; for the terminology and elementary results on Gaussian sums comp. [LE],
§2. Furthermore, for every x ∈ A let χx denote the character of A given by
χx(y) := ω(x, y), y ∈ A. Then (A, f), where

f : A × A → k∗, f(x, y) := t(x, y)τ(χx)τ(χy)τ(χxχy) for all x, y ∈ A,

is a central pair.
We assume now that k is a number field.
Let (A, f) be a central pair for k with the following properties:
(a) The symplectic pairing ωf : A × A → k∗ associated with f is nondegen-

erate; so especially all values of ωf belong to µm where m is the exponent of A
and µm ⊂ k∗.

(b) The central pair (A, f) is full, which means that the following conditions
(i) and (ii) hold:
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(i) There is a map αf : A → k
∗

such that αf (x)ord(x) =
∏ord(x)

j=1 f(x, xj) for
all x ∈ A

(ii) The degree of every αf (x), x ∈ A, over k is the order ord(x) of x, and
the degree of the extension kf/k which is generated over k by all αf (x), x ∈ A,
is the order of A.

Assume that (A, f) is a full central pair over the number field k. Then if we
consider A as a trivial Gk-module, the composition of maps

α : Gk
β
→ Â

γ
→ A,

where β(s)(x) := s(αf (x))/αf (x) for all s ∈ Gk, x ∈ A,and where for every

λ ∈ Â the element γ(λ) := xλ ∈ A is such that λ(y) = ωf (xλ, y) for all y ∈ A,
defines a surjective homomorphism

(α) ∈ H1(Gk, A) = Hom(Gk, A)

with the property k(α) = kf . Let f0 : A×A → µm denote a central 2-cocycle
such that ωf = ωf0 . Then by the general construction in §3 the set R(α),f0

is
defined. One can prove

(4.1) Proposition The character group Ĝk acts transitively on R(α),f0
. Ev-

ery (R) ∈ R(α),f0
has degree |A|

1/2
. If statement L(k) holds then there is

(R) ∈ R(α),f0
such that SR ⊂ {v : v divides m, v divides af (x) for all x ∈ A,

v divides ∞}, and such that all values of the character of R belong to Q(µl)
where l = l(K(α)/k, c(α),f0

).

Moreover, following [O2] , the results on automorphic induction in [AC] im-
ply the following proposition (AK denotes the adele ring of a number field K).

.
(4.2) Proposition Assume that the exponent of A is a prime number. Then

every (R) ∈ R(α),f0
is cuspidal automorphic in the sense of [L] . More pre-

cisely, the cuspidal automorphic representation corresponding to (R) ∈ R(α),f0

is automorphically induced in the sense of [AC] by a continuous character λ
of GL(1, AM ) of finite order where M ⊂ kf is the fixed field corresponding
to a maximal ω-isotropic subgroup of A under the isomorphism G(kf/k) ∼= A
which is induced by the epimorphism α : Gk → A constructed above; and the
character λ corresponds under the Artin map GL(1, AM ) → Gab

M (see [AT ]) to

a continuous character λ̃ of GM such that the restriction of λ̃ to Gkf
is the

central character γR of (R), i.e. γR is the unique irreducible constituent of the
restriction of R to Gkf

.
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In the special case A ∼= Z/2×Z/2 the classical modular forms corresponding
to the cuspidal automorphic representations include examples constructed by
E. Hecke [HE] from indefinite binary quadratic forms; see [O2], section 4, and
the literature mentioned there. Moreover for general A it can be shown that
there is (R) ∈ R(α),f0

such that R and the corresponding cuspidal automor-
phic representation can be decomposed as an outer tensor product of so called
hyperbolic representations where the underlying A´s are of type Z/m × Z/m.

(2) Elliptic curves and Galois representations; comp. [O1] , [J ].
.Let X be an elliptic curve defined over k. For any positive integer m denote

by Xm the kernel of the multiplication by m homomorphism X(k)
m
→ X(k).

The Weil-pairing ω = ωm : Xm × Xm → µm is a nondegenerate bilinear
Gk-equivariant symplectic pairing, see e.g. [C] or [LG] . Let f : A × A →
µm be a central 2-cocycle such that f(x, y)/f(y, x) = ω(x, y), x, y ∈ A. As-
sume that f is Gk-equivariant. Every k-rational point P ∈ X(k) \ mX(k) de-
fines an element ∆(P ) ∈ H1(Gk, Xm), ∆(P )(s) := s(Q) − Q for all s ∈ Gk,
where Q ∈ X(k) is such that mQ = P. If the restriction ∆(P )|Gk(Xm)

∈

Hom(Gk(Xm), Xm)G(k(Xm)/k) is surjective, then, according to the above con-
struction, the rational point P defines the set RP,f := Rδ(∆(P )),f of isomor-
phism classes of continuous irreducible representations of Gk. Kummer theory
for elliptic curves as developed in [BK] and [LG] , chapter V, yields examples
with surjective ∆(P )|Gk(Xm)

. We remark that if statement L(k) holds then the
set RP,f contains the isomorphism class of a representation which is unramified
outside the finite set of places which consists of all places above m and infinity
and all places where the elliptic curve has bad reduction; comp. [J ], sections
4.2-4.4.

The construction of an odd 2-dimensional Galois representation of octahedral
type of Artin-conductor 592 in [HA] makes also use - at least implicitly - of an
elliptic curve, namely X : y2 = x3 + 2x− 1. And the construction and thorough
investigation of odd 2-dimensional Galois representations of GQ of octaedral
type in [BF ] and [BU ] is based on elliptic curves X over Q and nontrivial
elements in H1(GQ, X2) which are interpreted in terms of 2-coverings of X .
For the theory of m-coverings of elliptic curves see [BS] and [C] . It offers a
more geometric view of our construction.

References

[A] E. Artin: Geometric algebra, Interscience, New York, 1957
[AT ] E. Artin, J. Tate: Class field theory, Benjamin, New York, 1967
[AC] J. Arthur, L. Clozel: Simple algebras, base change and the advanced

theory of the trace formula, Annals of Mathematics Studies 120, Princeton
University Press, New Jersey, 1989

[BK] M.I. Bashmakov: The cohomology of Abelian varieties over a number
field, Russian Mathematical Surveys, 27, 1972, 2, 25-70
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