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Solution of Equations

For a finite number of homogeneous polynomials, arithmetical geometry
considers the question of

(nontrivial) solutions in a given field k when the
coefficients are in k , such as number field, function field, field of p-adic
numbers, et cetera

In the theory of complex manifolds and complex spaces (also referred to
as function theory), the question is for solutions of hoomogeneous
polynomials over the field of all meromorphic functions on C.

Since every meromorphic function in C is the quotient of two entire
(holomorphic) functions on C, for solutions of homogeneous
equations,same as asking for solutions which are entire holomorphic
functions.

Question same as existence of nontrivial entire holomorphic curve (i.e.,
nontrivial holomorphic maps from C) in the variety defined by the
homogeneous polynomials.
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Lang’s Philosophy and Vojta’s Formal Parallelism

As Lang advocated for a long time, Vojta formulated a formal parallelism
between

the theory of Diophantine approximation in number theory and
value distribution theory (Nevanlinna theory) in complex analysis.
Paul Vojta, Diophantine approximations and value distribution theory. Lecture Notes in Mathematics,
1239. Springer-Verlag, Berlin, 1987.

A less developed but along the same line was also a formulation of such
formal parallelism by Charles Osgood.
Charles Osgood, Sometimes effective Thue-Siegel-Roth-Schmidt-Nevanlinna bounds, or better. J.
Number Theory 21 (1985), 347 - 389.

For the parallelism, the existence of nontrivial holomorphic map f from C
to X is parallel to the finiteness of number of rational points in X .

Maximum R (known as Schottky radius) for holomorphic map fR from disk
of radius R to X (after normalization is derivative of fR at the center is
parallel to the bound on the number of rational points in X .
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Statement of Result

Some explicit effective δn exists such that if
f (z0, · · · ,zn) = ∑ν0+···+νn=δ aν0···νn z0

ν0 · · ·zn
νn is a generic homogeneous

polynomial of degree δ≥ δn,

then any set of entire holomorphic functions
ϕ0, · · · ,ϕn on C without common zeroes which satisfy the functional
equation f (ϕ0, · · · ,ϕn)≡ 0 on C must have constant ratios ϕj

ϕk
for

0≤ j < k ≤ n.
Generic means the point (aν0···νn )

ν0+···+νn=δ
stays away from some

proper subvariety Zδ,n of P(n+δ

δ )−1.

Announced with a sketch of its proof in first two references. Details with some
simplifications and related results in third reference.
Yum-Tong Siu, Some recent transcendental techniques in algebraic and complex geometry. Proceedings of
the International Congress of Mathematicians, Vol. I (Beijing, 2002), pp.439448, Higher Ed. Press, Beijing,
2002.

Yum-Tong Siu, Hyperbolicity in complex geometry. The legacy of Niels Henrik Abel, pp.543-566, Springer,
Berlin, 2004.

Yum-Tong Siu, Hyperbolicity of Generic High-Degree Hypersurfaces in Complex Projective Spaces, 2012
(arXiv:1209.2723)
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Geometric Formulation and its Variations

Hyperbolicity. Statement with sharp bound δn = n + 2 (guaranteeing
general type)

formulated as nonexistence of nonconstant holomorphic
map from C to generic hypersurface X of degree ≥ δ in Pn goes by the
name of Kobayashi, Green-Griffiths, or Lang conjectures.
Removable Singularities. Holomorphic map from
∆−{0}= {0 < |ζ|< 1} to a generic hypersurface X of degree δ≥ δn in
Pn can be extended to a holomorphic map from ∆ to X .
Schottky Radius. Holomorphic map ϕ from ∆R = {|ζ|< R} to a generic
hypersurface X of degree ≥ δn in Pn with |dϕ(0)| normalized with
respect the Fubini-Study metric of Pn is bounded above by a positive
constant depending on X .
Hyperbolicity of Complement. There is no nonconstant holomorphic map
from C to Pn−X with degree of X ≥ δ∗n. Corresponding statements for
removable singularites and Schottky radius for Pn−X .
Done by lifting holomorphic map to X̃ defined by zn+1

δ− f (z0, · · · ,zn) in
Pn+1.
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Version with Slowly Coefficients (Not Yet Proved in General
Form)

Functional Relation with Slowly Varying Coefficients. Let aν0···νn (ζ) for
ν0 + · · ·+ νn = δ be entire functions on C without common zeroes

such
that for some ζ ∈ C the point (aν0···νn (ζ))

ν0+···+νn=δ
of P(n+δ

δ )−1 does not

belong to Zδ,n. Then there cannot exist entire functions ϕ0, · · · ,ϕn (not all
ratios algebraic) on C without common zeroes such that

∑
ν0+···+νn=δ

aν0···νn ϕ0
ν0 · · ·ϕn

νn ≡ 0

and

T

(
aν0···νn

aλ0···λn

, r

)
= o

(
max

0≤j<k≤n
T

(
ϕj

ϕk
, r

))
for (ν0, · · · ,νn) 6= (λ0, · · · ,λn).
Not yet proved in this form. Will indicate later what known techniques can
give.
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Geometric Formulation for Slowly Moving Functional
Relation

Geometric Formulation for Slowly Moving Functional Relation. There
cannot exist a holomorphic map ψ = (a,ϕ) : C→ Pn×PNn,δ

(whose
image is not contained in an algebraic curve) such that

I the image of a : C→ P(n+δ

δ )−1
is not contained in Zδ,n,

I ϕ(ζ) belongs to the hypersurface X (a(ζ)) in Pn defined by the polynomial
whose coefficients are a(ζ) and

I T (a(ζ), r) = o (T (ϕ(ζ), r)).
Relation with Nevanlinna Theory of Slowly Moving Targets. The
complement situation is related to but much weaker than Nevanlinna
theory of moving targets, for example, as formulated in the 1-dimensional
case by:
Norbert Steinmetz, Eine Verallgemeinerung des zweiten Nevanlinnaschen Hauptsatzes. J. Reine
Angew. Math. 368 (1986), 134-141.

and in the case of many components and higher-dimensional target by
Min Ru and Wilhelm Stoll, The Second Main Theorem for Moving Targets. J. Geometric Analysis. 2
(1991), 99-138.
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Historical Context

Big Picard Theorem.

Entire function missing two points must be constant.

Borel’s Theorem. If entire function ϕ1, · · · ,ϕn satisfy eϕ1 + · · ·+ eϕn = 0,
then ϕj −ϕk is constant with 1≤ j < k ≤ n.

n = 3 means eϕ1−ϕ3 + eϕ2−ϕ3 =−1 so that the entire function eϕ1−ϕ3

misses 0 and −1 and therefore must be constant.

Proof of Borel’s theorem comes from differentiating repeatedly the
functional equation eϕ1 + · · ·+ eϕn = 0 and applying Nevanlinna’s
logarithmic derivative lemma.
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Somewhat Later Results

Later came generalizations to general problems of functional relations
among entire functions.

Question concerns restriction on entire functions from certain functional
relations.

Conclusion again comes from differentiating the functional relation and
applying Nevanlinna’s logarithmic derivative lemma.
Results are for

I (Green 1975) Fermat hypersurface ϕm
0 + · · ·+ ϕm

n = 0,
I (Toda 1971) ∑

p
j=0 aj (ζ)ϕj (ζ)nj = 1 with ∑

p
j=0

1
nj
< 1

p (where aj (ζ) is of

slower growth order T (aj , r) = o (T (ϕj , r)) for 0≤ j ≤ p).
I (Masuda-Noguchi 1994) Polynomial relation with few terms relative to

degree.
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Reason for Interest in Hyperbolicity and Nevanlinna Theory

My own interest for Nevanlinna theory at this time comes from analytic
methods for the abundance conjecture.

Though my talk is not about the abundance conjecture which I am not
ready to talk about, I would like to point out the role of Nevanlinna theory
in the analytic method for it.

Abundance Conjecture. For a compact complex algebraic manifold X , its
Kodaira dimension κkod(X) agrees with its numerical Kodaira dimension
κnum(X).

κkod(X) = limsupm→∞

logdimC Γ(X ,mKX )
logm

Rough meaning: dimC Γ(X ,mKX )≈mκkod(X).

κnum(X) = supk≥1

[
limsupm→∞

logdimC Γ(X ,mKX +kA)
logm

]
A being any ample line bundle. κnum(X) independent of A.
Rough meaning: dimC Γ(X ,mKX + kA)≈mκnum(X)
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Metric from Amply Twisted Sections of Tensor Powers of
Line Bundle

Let X be a compact complex manifold and L be a holomorphic line
bundle.

ΦL =
∞

∑
m=1

εm

qm

∑
j=1

∣∣∣s(m)
j

∣∣∣ 2
m
,

where s(m)
1 , · · · ,s(m)

qm form a C-basis of Γ(X ,mL) and εm > 0 decrease
monotonically fast enough to guarantee convergence of series.

The quotient 1
ΦL

gives a metric (possibly singular) for L because for any

local section σ of L, the expression |σ|
2

ΦL
is well-defined pointwise square

norm independent of choice of local trivialization for L.

Its curvature current is

ΞL =

√
−1

2π
∂∂̄ logΦL
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Metric from Sections of Tensors Powers With Ample Twisting

Let A be an ample line bundle over X .

The metric 1
Φ̃L

for L from ample twisting is the limit of

1

(ΦmL+A)
1
m

as m goes to ∞ through an appropriate sequence.

Its curvature current Ξ̃L is
√
−1

2π
∂∂̄ log Φ̃L = lim

m→∞

1
m

ΞmL+A.
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Numerically Trivial Foliation and Fibration

The null directions of Ξ̃KX define a meromorphic foliation

given by a subsheaf of the tangent bundle instead of a subbundle.
Main Difficulty of Abundance Conjecture: To prove the compactness of
leaves of numerically trivial foliation,
so that factoring out the fibers gives lower dimension.
Precisely here Nevanlinna theory plays a role in the analytic method.
Illustrate in the very simple situation of regular foliation of leaf dimension
1 by null space of smooth curvature of metric of KX .
A generic noncompact leaf C has trivial tangent bundle and is C.
dimC H0 (X ,mKX + A)≥ γm for some γ > 0 and m large implies that for a
fixed point P0 of the leaf C the restriction of some sm ∈ H0 (X ,mKX + A)
vanishes to order γm

2 at P0.
Contradiction comes from applying Nevanlinna theory to

1
m

√
−1∂∂̄ log(sm|C) .
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Nevanlinna Theory Simulates for Entire Curves Behavior of
Compact Curves

For an entire curve C in X (holomorphic image of ϕ : C→ X ) Nevanlinna
theory replaces Chern class of a line bundle by Nevanlinna’s
characteristic function T (r ,ϕ).

It replaces divisor of a section by Nevanlinna’s counting function.

Alternative description of the simulation is the use of the Ahlfors current
(of bi-dimension (1,1)) whose value at a smooth (1,1)-form η is

lim
r→∞

1
T (r ,ϕ)

∫ r

ρ=0

dρ

ρ

∫
∆ρ

ϕ
∗
η.

We now return to discussion of hyperbolicity of hypersurfaces.
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Methods Motivated by Bloch’s Techniques

Methods used in our results are motivated by Bloch’s techniques in his
1926 paper.

André Bloch, Sur les systèmes de fonctions uniformes satisfaisant à l’équation d’une varit́é
algébrique dont l’irrégularité dépasse la dimension. J. de Mathematiques Pures et Appliqués 5
(1926), 19–66.

In his 1926 paper he established:
I If A = C3 /Λ (for some full rank lattice Λ) and X is a complex surface of A

such that the restrictions of the differentials dz1,dz2,dz3 of the coordinates
of C3 to X are C-linearly independent, then the image of a holomorphic
map from C to X is contained in the translate of an abelian subvariety of A
of complex dimension 1.

I Its higher dimensional version.
I Its Schottky radius version.
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Nevanlinna’s Characteristic Function and Logarithmic
Derivatrive Lemma

For a holomorphic map f from C (with coordinate ζ) to compact algebraic
manifold X

with closed positive (1,1)-form ω. Nevanlinna’s characteristic
function is T (r , f ,ω) =

∫ r
ρ0

dρ

ρ

∫
|ζ|<ρ

f ∗ω.

Nevanlinna’s logarithmic derivative lemma: for any meromorphic function
F on C (regarded as a map C→ P1 with Fubini-Study form ωP−1)∫ 2π

θ=0
log+ |d logF |

(
reiθ
)

dθ = O (logT (r ,F ,ωP1) + log r) ‖.

The symbol ‖ means that there exist r0 > 0 and a subset E of
R∩{r > r0} with finite Lebesgue measure such that the inequality holds
for r > r0 and not in E .
Rolf Nevanlinna, Zur Theorie der Meromorphen Funktionen. Acta Math. 46, 1–99 (1925).
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Schwarz’s Lemma for Jet Differentials and Two Other
Techniques in Bloch’s Paper

Most important contribution from Bloch’s paper is what is now referred to
as Schwarz’s lemma for jet differentials.

If X is a compact complex algebraic manifold and ω be a holomorphic jet
differential on X which vanishes on an ample divisor D of X , then the
pullback ϕ∗ω of ω by a holomorphic map ϕ : C→ X is identically zero.
Here a holomorphic jet differential ω (of order k and weight m) means
that locally it is a polynomial P in dνzj with 1≤ ν≤ k and 1≤ j ≤ n
(z1, · · · ,zn being local coordinates) whose coefficients are holomorphic
functions of z1, · · · ,zn. Weight of P is m when dνzj is given weight ν.
Vanishing on D means locally each coefficient of P vanishes on D.
Vanishing ϕ∗ω on C (with coordinate ζ) means vanishing of coefficient of
(dζ)m (which is identified with ϕ∗ω by ignoring dνζ for ν≥ 2 by
convention).
Vanishing of full ϕ∗ω from composing ϕ with holomorphic map C→ C.
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Logarithm of Global Meromorphic Functions as Local
Coordinates in Applying Logarithmic Derivative Lemma

Bloch’s breakthrough is to prove Schwarz’s lemma for jet differentials by
applying the logarithmic derivative lemma with logarithm of global
meromorphic functions as local coordinates.

Assume ϕ∗ω not identically zero. Apply standard integration by parts

twice to ∂∂̄ logϕ∗ |ω|
2

hD |sD |2 (with hD = positively-curved metric for line bundle
whose canonical section is sD with divisor D).
Vanishing of ω on D implies T (ϕ, r)≤ positive constant times average of
log+ |ϕ∗ω| on |ζ|= r .
Choose global meromorphic functions F1, · · · ,F` on X so that at any point
of X some subset of logF1, · · · , logF` forms a local coordinate system.
|ϕ∗ω| dominated on X by a positive-coefficent polynomial in |dν logFj |.
Logarithm derivative lemma applied to dν logFj ◦ϕ makes the average of
log+ |ϕ∗ω| on |ζ|= r dominated by positive constant times logT (ϕ, r),
giving a contradiction.
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Vanishing of Pullback of Jet Differential to Submanifold

The other two techniques of Bloch are two sides of the observation about
pulling back to X a jet differential on A which is a polynomial P of dνzj

with constant coefficients (where z1, · · · ,zn are the coordinates of Cn).

One side is that a good choice of P (if possible) gives a holomorphic jet
differential ω on X which vanishes on an ample divisor.

The other side is that the impossibility of good choice means X contains a
translate of an a abelian subvariety.

Technically Bloch’s implementation of the vanishing of pullback of jet
differential to submanfiold is done by using the forgetful map which keeps
the differentials but forgets the position and also using the Zariski closure
Zk of the k -jet map dk ϕ of ϕ in the k -jet space Jν(A) of A.
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Forgetful Map Keeping Differentials and Forgetting Position

The k -jet space Jk (A) of A is a trivial bundle with fiber CNk generated by
∂z1

ν1 · · ·∂zn
νn with 1≤ ν1 + · · ·+ ν≤ k .

Forgetful map πk : Jk (A) = A×CNk → CNk is simply the natural
projection onto the second factor.

Zk = Im(dk ϕ) ↪→ Jk (A) = A×CNk
πk→ CNk

σ ↓
A

Good choice of P possible if and only if the generic fiber of the restriction
of πk to Zk has finite fiber (for sufficiently large k ≥ kn).

Good case implies that the pullback of a meromorphic function f on A
(with ample pole and zero divisors) to Zk satisfies a polynomial equation
whose coefficients are of the form P (from pulling back by πk ) so that the
P in the constant term is a good choice.
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Hyperbolicity from Sufficiently Independent Holomorphic Jet
Differentials Vanishing on Ample Divisor

Since Bloch’s technique of the Schwarz lemma one strategy of proving
hyperbolicity of X is to produce holomorphic k -jet differentials ω1, · · · ,ω`

on X

which vanish on some ample divisor of X
and which are sufficiently independent in the sense that
for any k -jet ξ of X representable by some nonsingular holomorphic curve
germ,
the value of ωj at ξ is nonzero for some 1≤ j ≤ `.
Hyperbolicity comes from using a regular point of the entire curve in X to
define the k -jet η to get a contradiction.
Condition of not containing translate of abelian subvariety can be
interpreted as a condition to guarantee that Lie differentiation of jet
differentials with respect to constant vector fields generates enough
independent ones.
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Translation and Pinpointing of Bloch’s Techniques and
Arguments

Bloch’s terminology and style are very different from what modern
mathematicians are accustomed to.

As a result, for a long time Bloch’s results were labeled as conjectures.

A translation, into modern terminology and presentation style of Bloch’s
argument for Schwarz’s lemma for differentials was given as Theorem 3 in
Yum-Tong Siu and Sai-Kee Yeung, Defects for ample divisors of abelian varieties, Schwarz lemma,
and hyperbolic hypersurfaces of low degrees. Amer. J. Math. 119 (1997), 1139–1172. Addendum,
ibid. 119 (2003), 441-448.

Location of Bloch’s key steps in his 1926 paper is pinpointed in
Yum-Tong Siu, Hyperbolicity in complex geometry. The legacy of Niels Henrik Abel, pp.543-566,
Springer, Berlin, 2004.
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Relation Between Logarithmic Derivative Lemma and
Number Theory

In Faltings’s proof of finiteness of number of rational points in a subvariety
X of an abelian variety A with X containing no translate of any abelian
subvariety,

Gerd Faltings, Approximation on Abelian Varieties. Ann. of Math. 133 (1991), 549–576.

which uses Vojta’s method of proving the Mordell conjecture
Paul Vojta, Siegel’s theorem in the compact case, Ann. of Math. 133 (1991), 509–548.

the logarithmic derivative lemma corresponds to the following step.
For x1, · · · ,xm ∈ X rational, the quadratic property of the Neron-Tate
height (‖·‖ with inner product 〈·, ·〉) is used to make the height of
x = (x1, · · · ,xm) small relative to the Q-line bundle

L :=−ε

m

∑
i=1

s2
i pr∗i (L) +

m−1

∑
i=1

(sixi − si+1xi+1)∗(L)

over Am, ample over X m
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(where pri is the projection onto the i th factor

and sixi − si+1xi+1 is the
map from Am to A sending (x1, · · · ,xm) to sixi − si+1xi+1, si

2 times the
height of xi with respect to L is ≈ 1),
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Classical Construction of Holomorphic 1-Forms on Compact
Riemann Surfaces in P2

For a nonsingular complex curve C of genus g ≥ 1 in the complex plane
P2 defined by polynomial R(x ,y) = 0 (where x ,y are inhomogeneous
coordinates of P2),

the g C-linearly independent holomorphic 1-forms on
C are given by

P(x ,y)
dx
Ry

=−P(x ,y)
dy
Rx

for a polynomial P(x ,y) of degree δ−3, where δ is the degree of the
curve C with g = 1

2 (δ−1)(δ−2).
The argument is the same as Bloch’s technique of vanishing of pullback
of jet differential to submanifold.
The meromorphic 1-form (or 1-jet) dx on P2 when pulled back to C gets
new vanishing order to cancel the pole order of dx .
In Bloch’s case a good choice of polynomial P of differentials dνwj ,
instead of dx , is used to get the required additional vanishing order.
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Fiberwise Jet Differential versus Jet Differential on Total
Space

For a holomorphic family of nonsingular complex plane curves Ca with
holomorphic parameter a ∈∆ defined by R(x ,y ,a),

the fiberwise 1-form

ωa =
dx

Ry (x ,y ,a)
=− dy

Rx (x ,y ,a)

is a 1-form on Ca.
Let C = ∪a∈∆Ca be the total space.
The holomorphic family of fiberwise holomorphic 1-forms {ω}a∈∆ is not
the same as a holomorphic 1-form on C ,
because no value is assigned to a vector field of C transversal to the fiber
Ca.
We cannot use 0 = dR = Rxdx + Ry dx + Rada to construct a
holomorphic 1-form on C ,
unlike the situation 0 = dR = Rxdx + Ry dx on Ca which enables us to
divide by Ry to get ωa.
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(n−1)-Jet Differential on Hypersurface from Vanishing of
Pullback of Low-Pole Order Jet Differential on Pn

Let X be a generic nonsingular hypersurface of degree δ in Pn defined by
a polynomial f (x1, · · · ,xn) of degree δ in the affine coordinates x1, · · · ,xn

of Pn.

Suppose ε, ε′, θ0, θ, and θ′ are numbers in the open interval (0,1) such
that nθ0 + θ≥ n + ε and θ′ < 1− ε′.

Then there exists an explicit positive number A = A(n,ε,ε′) depending
only on n, ε, and ε′ such that

for δ≥ A and any nonsingular hypersurface X in Pn of degree δ there
exists a non identically zero OPn (−q)-valued holomorphic (n−1)-jet
differential ω on X represented by Q

fx1−1 ,

Yum-Tong Siu (Harvard University) Hyperbolicity of Generic High-Degree Hypersurfaces November 28, 2012 27 / 49



(n−1)-Jet Differential on Hypersurface from Vanishing of
Pullback of Low-Pole Order Jet Differential on Pn

Let X be a generic nonsingular hypersurface of degree δ in Pn defined by
a polynomial f (x1, · · · ,xn) of degree δ in the affine coordinates x1, · · · ,xn

of Pn.

Suppose ε, ε′, θ0, θ, and θ′ are numbers in the open interval (0,1)

such
that nθ0 + θ≥ n + ε and θ′ < 1− ε′.

Then there exists an explicit positive number A = A(n,ε,ε′) depending
only on n, ε, and ε′ such that

for δ≥ A and any nonsingular hypersurface X in Pn of degree δ there
exists a non identically zero OPn (−q)-valued holomorphic (n−1)-jet
differential ω on X represented by Q

fx1−1 ,

Yum-Tong Siu (Harvard University) Hyperbolicity of Generic High-Degree Hypersurfaces November 28, 2012 27 / 49



(n−1)-Jet Differential on Hypersurface from Vanishing of
Pullback of Low-Pole Order Jet Differential on Pn

Let X be a generic nonsingular hypersurface of degree δ in Pn defined by
a polynomial f (x1, · · · ,xn) of degree δ in the affine coordinates x1, · · · ,xn

of Pn.

Suppose ε, ε′, θ0, θ, and θ′ are numbers in the open interval (0,1) such
that nθ0 + θ≥ n + ε and θ′ < 1− ε′.

Then there exists an explicit positive number A = A(n,ε,ε′) depending
only on n, ε, and ε′ such that

for δ≥ A and any nonsingular hypersurface X in Pn of degree δ there
exists a non identically zero OPn (−q)-valued holomorphic (n−1)-jet
differential ω on X represented by Q

fx1−1 ,

Yum-Tong Siu (Harvard University) Hyperbolicity of Generic High-Degree Hypersurfaces November 28, 2012 27 / 49



(n−1)-Jet Differential on Hypersurface from Vanishing of
Pullback of Low-Pole Order Jet Differential on Pn

Let X be a generic nonsingular hypersurface of degree δ in Pn defined by
a polynomial f (x1, · · · ,xn) of degree δ in the affine coordinates x1, · · · ,xn

of Pn.

Suppose ε, ε′, θ0, θ, and θ′ are numbers in the open interval (0,1) such
that nθ0 + θ≥ n + ε and θ′ < 1− ε′.

Then there exists an explicit positive number A = A(n,ε,ε′) depending
only on n, ε, and ε′ such that

for δ≥ A and any nonsingular hypersurface X in Pn of degree δ there
exists a non identically zero OPn (−q)-valued holomorphic (n−1)-jet
differential ω on X represented by Q

fx1−1 ,

Yum-Tong Siu (Harvard University) Hyperbolicity of Generic High-Degree Hypersurfaces November 28, 2012 27 / 49



(n−1)-Jet Differential on Hypersurface from Vanishing of
Pullback of Low-Pole Order Jet Differential on Pn

Let X be a generic nonsingular hypersurface of degree δ in Pn defined by
a polynomial f (x1, · · · ,xn) of degree δ in the affine coordinates x1, · · · ,xn

of Pn.

Suppose ε, ε′, θ0, θ, and θ′ are numbers in the open interval (0,1) such
that nθ0 + θ≥ n + ε and θ′ < 1− ε′.

Then there exists an explicit positive number A = A(n,ε,ε′) depending
only on n, ε, and ε′ such that

for δ≥ A and any nonsingular hypersurface X in Pn of degree δ

there
exists a non identically zero OPn (−q)-valued holomorphic (n−1)-jet
differential ω on X represented by Q

fx1−1 ,

Yum-Tong Siu (Harvard University) Hyperbolicity of Generic High-Degree Hypersurfaces November 28, 2012 27 / 49



(n−1)-Jet Differential on Hypersurface from Vanishing of
Pullback of Low-Pole Order Jet Differential on Pn

Let X be a generic nonsingular hypersurface of degree δ in Pn defined by
a polynomial f (x1, · · · ,xn) of degree δ in the affine coordinates x1, · · · ,xn

of Pn.

Suppose ε, ε′, θ0, θ, and θ′ are numbers in the open interval (0,1) such
that nθ0 + θ≥ n + ε and θ′ < 1− ε′.

Then there exists an explicit positive number A = A(n,ε,ε′) depending
only on n, ε, and ε′ such that

for δ≥ A and any nonsingular hypersurface X in Pn of degree δ there
exists a non identically zero OPn (−q)-valued holomorphic (n−1)-jet
differential ω on X represented by Q

fx1−1 ,

Yum-Tong Siu (Harvard University) Hyperbolicity of Generic High-Degree Hypersurfaces November 28, 2012 27 / 49



where q =
⌊

δθ′
⌋

and

Q is a polynomial of degree m0 =
⌈
δθ0
⌉

in x1, · · · ,xn and

of homogeneous weight m =
⌈
δθ
⌉

in

d jx1, · · · ,d jxn (1≤ j ≤ n−1)

when the weight of d jx` is assigned to be j .

Yum-Tong Siu (Harvard University) Hyperbolicity of Generic High-Degree Hypersurfaces November 28, 2012 28 / 49



where q =
⌊

δθ′
⌋

and

Q is a polynomial of degree m0 =
⌈
δθ0
⌉

in x1, · · · ,xn and

of homogeneous weight m =
⌈
δθ
⌉

in

d jx1, · · · ,d jxn (1≤ j ≤ n−1)

when the weight of d jx` is assigned to be j .

Yum-Tong Siu (Harvard University) Hyperbolicity of Generic High-Degree Hypersurfaces November 28, 2012 28 / 49



where q =
⌊

δθ′
⌋

and

Q is a polynomial of degree m0 =
⌈
δθ0
⌉

in x1, · · · ,xn and

of homogeneous weight m =
⌈
δθ
⌉

in

d jx1, · · · ,d jxn (1≤ j ≤ n−1)

when the weight of d jx` is assigned to be j .

Yum-Tong Siu (Harvard University) Hyperbolicity of Generic High-Degree Hypersurfaces November 28, 2012 28 / 49



where q =
⌊

δθ′
⌋

and

Q is a polynomial of degree m0 =
⌈
δθ0
⌉

in x1, · · · ,xn and

of homogeneous weight m =
⌈
δθ
⌉

in

d jx1, · · · ,d jxn (1≤ j ≤ n−1)

when the weight of d jx` is assigned to be j .

Yum-Tong Siu (Harvard University) Hyperbolicity of Generic High-Degree Hypersurfaces November 28, 2012 28 / 49



Low Pole Order Jet Differential on Pn to Use for Pullback

The low pole-order jet differential on Pn which we use to pull back to X is
Q

which is a polynomial of degree m0 =
⌈
δθ0
⌉

in x1, · · · ,xn

and of homogeneous weight m =
⌈
δθ
⌉

in

d jx1, · · · ,d jxn (1≤ j ≤ n−1)

.
Need to know

I the pullback of Q to X is nonzero
I the pullback of Q to X vanishes on the divisor of fx1 −1.
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Nonvanishing of Pullback to Hypersurface of Low Pole Order
Jet Differential on Pn

Let 1≤ k ≤ n−1 and let f be a polynomial of degree δ in
inhomogeneous coordinates x1, · · · ,xn of Pn so that

the zero-set of f defines a complex manifold X in Pn.

Let Q be a non identically zero polynomial in the variables x1, · · · ,xn and
d jx` (0≤ j ≤ k , 1≤ `≤ n).

Assume that Q is of degree m0 in x1, · · · ,xn

and is of homogeneous weight m in the variables d jx`
(1≤ j ≤ k , 1≤ `≤ n).

If m0 + 2m < δ, then Q is not identically zero on the space of k -jets of X .
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Vanishing of Pullback on Divisor

The pullback to X of the low pole-order jet differential Q on Pn vanishes
on {fx1−1 = 0} with a good choice of Q.

This is verified by computing an upper bound for the dimension of all such
restrictions to {fx1−1 = 0} of the pullback of Q,

and using dνf ≡ 0 on X to express dνx1 in terms of dλxj for 1λ≤ ν and
2≤ j ≤ n (where 1≤ ν≤ n−1),

and comparing the upper bound with the number of coefficients of the
polynomial

Note that the restriction to {fx1−1 = 0} and not the pullback to it is used,

because of definition of vanishing of jet differential on a divisor.
Our construction of jet differential is analogous to

I Bloch’s construction of jet differentials on surfaces in 3-dimensional abelian
variety and

I the classical construction of holomorphic 1-forms on plane curves.
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Need for Sufficiently Many Independent Holomorphic Jet
Differentials Vanishing on Ample Divisor

Schwarz’s lemma applied to ω = Q
fx1−1 implies that ϕ∗ω≡ 0 on C.

That is, image of ϕ satisfies the ordinary differential equation defined by
the jet differential ω.

At every point of X need sufficiently many such ω to eliminate all the
differentials to get enough algebraic equations for ϕ, making ϕ constant.

In our case we introduce a new technique of slanted vector fields to
generate enough such jet differentials.
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Universal Hypersurface

Fix a (sufficiently large) positive integer δ and we suppress the
dependence on δ.

The universal hypersurface X of degree δ is the hypersurface in
Pn×P(n+δ

δ )−1 defined by

f = ∑
ν0+···+νn=δ

aν0,··· ,νn z0
ν0 · · ·zn

νn

with [z0, · · · ,zn] ∈ Pn and a = [aν0,··· ,νn ]
ν0+···+νn=δ

∈ P(n+δ

δ )−1.

Fiber of projection Pn×P(n+δ

δ )−1→ P(n+δ

δ )−1 over

a = [aν0,··· ,νn ]
ν0+···+νn=δ

∈ P(n+δ

δ )−1 is the hypersurface X (a).
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Extension of Holomorphic Jet Differential from Fiber of
Universal Hypersurface

There is a proper subvariety Zk ,m,q of P(n+δ

δ )−1

such that for â outside

Zk ,m,q every holomorphic k -jet differential ω(â) of weight on X (â) can be
extended to a family of holomorphic k-jet differential ω(a) of weight on
X (a) for a ∈ P(n+δ

δ )−1,

where the family is holomorphic for a outside of the infinity hyperplane of
P(n+δ

δ )−1 across which there is a pole order of pk ,m,q .
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extended to a family of holomorphic k -jet differential ω(a) of weight on
X (a) for a ∈ P(n+δ

δ )−1,

where the family is holomorphic for a outside of the infinity hyperplane of
P(n+δ

δ )−1 across which there is a pole order of pk ,m,q .

Yum-Tong Siu (Harvard University) Hyperbolicity of Generic High-Degree Hypersurfaces November 28, 2012 34 / 49



Extension of Holomorphic Jet Differential from Fiber of
Universal Hypersurface

There is a proper subvariety Zk ,m,q of P(n+δ

δ )−1 such that for â outside
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Generation of New Jet Differentials by Lie Differentiation by
Vector Fields

One way to generate more jet differentials is by applying Lie derivatives
with respect to vector fields to one jet differential.

However, there is no holomorphic vector field on a nonsingular
hypersurface of high degree δ in Pn and meromorphic vector fields there
have high pole order of the order δ.

The technique to overcome this is to extend the jet differential from the
fiber of the universal hypersurface X and then use slanted vector fields of
low pole order on X to differentiate.

Slanted means not tangential to a fiber.
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Slanted Vector Fields

Let e` = (0, · · · ,0,1, · · · ,0) ∈ Nn+1 with 1 in the `-th place.

The (1,0)-twisted tangent bundle of X is globally generated by
holomorphic sections of the forms

L

(
zq

(
∂

∂aλ+ep

)
− zp

(
∂

∂aλ+eq

))

and ∑j Bj
∂

∂zj
+ ∑ν0+···+νn=δ Lν0···νn

∂

∂aν0 ···νn
,

where λ ∈ Nn+1 with |λ|= δ−1 and L, Lν0···νn (respectively Bj ) are
homogeneous linear functions of {aν0···νn} (respectively z0, · · · ,zn)

with Lν0···νn and Bj chosen to satisfy df = 0.

Introduction of slanted vector fields motivated by Clemens’s result of no
rational curve in generic hypersurface of sufficiently high degree.
Clemens, H.: Curves on generic hypersurfaces, Ann. Ec. Norm. Sup. 19(1986), 629–636.
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Effect of Action of Slanted Vector Fields

Geometric formulation of the statement on explicit slanted vector fields is
that TX ⊗OPn (1) is globally generated.

When zq

(
∂

∂aλ+ep

)
− zp

(
∂

∂aλ+eq

)
(with homogeneous coordinates

appropriately interpreted as inhomogeneous coordinates) is applied to a
function g(z,a),

the effect is replacing aλ+ep by zq and replacing aλ+eq by zp inside
g(z,a).

In other words, certain dependence on a is transferred to dependence on
z.
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Vertical Jet Space and Low Pole-Order Slanted Vector Fields

The space Jvert
n−1 (X ) of vertical (n−1)-jets of X is defined by

f = df = · · ·= dn−1f = 0 in (Jn−1 (Pn))×P(n+δ

δ )−1

with the coefficients aν0···νn of f regarded as constants when forming d j f .

Earlier construction of slanted vector fields on X can be straightforwardly
generalized to the following statement on slanted vector fields on
Jvert

n−1 (X ).

There exist cn, c′n ∈ N such that the (cn,c′n)-twisted tangent bundle of the
projectivization of Jvert

n−1 (X ) is globally generated.

That is,
TJvert

n−1 (X )⊗OPn (cn)⊗OP
(n+δ

δ )−1

(
c′n
)

is globally generated on Pn×P(n+δ

δ )−1.
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Sufficiently Independent Jet Differentials

The jet differential

ωa =
Q(a)

f (a)
x1 −1

on X (a),

after the process of extension to the total space of vertical jet differentials
and the application of slanted vector fields of low pole order,
yields sufficiently independent jet differentials on X (a) for a generic
a ∈ P(n+δ

δ )−1,

because Q(a) is of degree m0 =
⌈
δθ0
⌉

in x1, · · · ,xn and
of weight m =

⌈
δθ
⌉

in

d jx1, · · · ,d jxn (1≤ j ≤ n−1)

with 0 < θ0 < 1, 0 < θ < 1,
whereas the degree of f (a) is δ.
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Upper Bound of Vanishing Order of Constructed Jet
Differential

Every time Lie differentiation by slanted vector field is used, vanishing
order of constructed jet differential at infinity is decreased.

Need an effective upper bound of vanishing order of pullback of

ωa =
Q(a)

f (a)
x1 −1

to X (a).
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Vanishing Order of Restriction of Polynomials

ASSUMPTION: Let W be a nonempty connected open subset of PN such
that X (a) is regular for every a ∈W .

Let m be a positive integer and for a ∈W let g(a) be a homogeneous
polynomial of degree m in the homogeneous coordinates z0, · · · ,zn of Pn

whose coefficients g(a)
µ0,··· ,µn (for µ0 + · · ·+ µn = m) are holomorphic

functions of a on W , which is not identically zero on Pn for a ∈W .
Let σ(a) be a holomorphic local section of X over W .
CONCLUSION: There is a proper subvariety Zg,σ of W such that
for α ∈W −Zg,σ the vanishing order of the restriction g(a)

∣∣
X (a) of g(a) to

X (a)

at the point σ(a) of X (a) is no more than m.
As a consequence, for any relatively compact nonempty subset W̃ of W
there exists a proper subvariety Z̃g of W̃ such that
for α ∈ W̃ − Z̃g the vanishing order of the restriction g(a)

∣∣
X (a) of g(a) to

X (a) at any point of X (a) is no more than m.
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Big-Picard-Theorem Type Extendibility, Across the Puncture,
of Holomorphic Maps from Punctured Disk

Modification needed to get Big-Picard-Theorem type extendibility uses
the following Trivial Multiplicative Version of Heftungslemma.

Let r0 > 0 and F be meromorphic on C−∆r0 . Let r0 < r1.

Then there exists some function G holomorphic and nowhere zero on
C∪{∞}−∆r1 such that

FG is meromorphic on C.

Moreover, when F is holomorphic, G can be chosen so that

FG is also holomorphic on C−{0}.
This enables us to repeat the argument for the Schwarz lemma,

but reparametrization of entire curve by a holoomorphic map C→ C is
not possible.
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Entire Function Solution of Polynomial Equations with
Slowing Varying Coefficients

There exists a positive integer δn and for δ≥ δn there exists a property
subvariety Z of PN (where N =

(
δ+n

n

)
) with the following property.

There cannot exist entire functions ϕ0(ζ), · · · ,ϕn(ζ) without common
zeroes and entire functions αν0,··· ,νn (ζ) for ν0 + · · ·+ νn = δ without any
common zeroes satisfying

∑
ν0+···+νn=δ

αν0,··· ,νn (ζ)
d j

dζj (ϕ0(ζ)ν0 · · ·ϕn(ζ)νn )≡ 0 for 0≤ j ≤ n−1

such that
the map ψ : ζ 7→ α(ζ) = (αν0,··· ,νn (ζ)) ∈ PN is nonconstant,
α(ζ0) = (αν0,··· ,νn (ζ0)) is not in Z for some ζ0 ∈ C, and
T (r ,ψ) = o (T (r ,ϕ) + log r) ‖, where ϕ : C→ Pn is defined by
[ϕ0, · · · ,ϕn]. The notation ‖ means that for some r0 > 0 and
E ⊂ R∩{r > r0} with finite Lebesgue measure such that the inequality
holds for r > r0 and not in E .
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Second Main Theorem for Jet Differential

ASSUMPTION: Let X be an n-dimensional compact complex manifold with
an ample line bundle L.

Let D1, · · · ,Dp,E1, · · · ,Eq be divisors of L.
Let ω be log-pole jet differential on X with vanishing on D = D1 + · · ·+ Dp

such that
the log-pole set of ω is contained in E = E1 + · · ·+ Eq with multiplicities
counted.
CONCLUSION: Then for any holomorphic map ϕ from the affine complex
line C to X such that
the image of ϕ is not contained in E and the pullback ϕ∗ω not identically
zero,

pT (r ,ϕ,L)≤ N(r ,ϕ,E) + O (logT (r ,ϕ,L)) ‖.

In other words,
q

∑
j=1

m (r ,ϕ,Ej)≤ (q−p)pT (r ,ϕ,L) + O (logT (r ,ϕ,L)) ‖.
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Multiplicity of Log-Pole Set

The meaning of the log-pole set of ω being contained in
E = E1 + · · ·+ Eq with multiplicities counted is the following.

Locally ω is of the form

∑
τ1,λ1,··· ,τk ,λk

hτ1,λ1,··· ,τk ,λk (dτ1 logF1)λ1 · · ·(dτ` logF`)
λ`

with
τ1λ1 divF1 + · · ·+ τ`λ` divF`

contained in E with multiplicities counted,

where divFj is the divisor of Fj .
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Cartan’s Second Main Theorem for Hyperplanes in General
Position

Cartan’s proof of his Second Main Theorem for hyperplanes in general
position can be interpreted in the setting of the Second Main Theorem for
log-pole jet differentials.

Cartan’s Second Main Theorem is simply the special case

ω =
Wron(dx1, · · · ,dxn)

F1 · · ·Fq

in inhomogeneous coordinates x1, · · · ,xn of Pn,
where F1, · · · ,Fq are the degree-one polynomial in x1, · · · ,xn which
define the q hyperplanes in Pn in general position.
Here the notation for the Wronskian

Wron(η1, · · · ,η`)

for jet differentials η1, · · · ,η` on a complex manifold Y is used to mean
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the jet differential

det
(

dλ−1
ηj

)
1≤λ,j≤`

= ∑
σ∈S`

(sgnσ)ησ(1)

(
dησ(2)

)
· · ·
(

d`−1
ησ(`)

)
on Y , where S` is the group of all permutations of {1,2, · · · , `} and sgnσ

is the signature of the permutation σ.

The denominator F1 · · ·Fq in ω gives the vanishing order q at the infinity
hyperplane of Pn.

The key argument here is that from the general position assumption of
the zero-sets of F1, · · · ,Fq we can locally write ω as a constant times

Wron(dFν1 , · · · ,dFνn )

F1 · · ·Fq
=

Wron(d logFν1 , · · · ,d logFνn )

Fνn+1 · · ·Fνq

in a neighborhood U of a point when Fj is nowhere zero on U for j not
equal to any of the indices ν1, · · · ,νn.
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Second Main Theorem for Jet Differential with Slowly Moving
Targets

ASSUMPTION: Let S ⊂ PN be a complex algebraic manifold and
X ⊂ Pn̂×S be a complex algebraic manifold.

Let π : X → S be the projection induced by the natural projection
Pn̂×PN → PN to the second factor.

Let LS be an ample line bundle of S.

Let L be a line bundle of X such that L + π−1 (LS) is ample on X .

Let D1, · · · ,Dp,E1, · · · ,Eq be divisors of L.

Let D = D1 + · · ·+ Dp and E = E1 + · · ·+ Eq ,

For a ∈ S let X (a) = π−1(a) and D(a) = D|X (a) and E(a) = E |X (a) .

Let Z be a proper subvariety of S.
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For a ∈ S−Z let ω(a) be a log-pole jet differential on X (a) such that

ω(a) vanishes on the divisor D(a) and
the log-pole set of ω(a) is contained in divisor E(a) with multiplicity
counted.
Assume that ω(a) is holomorphic in a for a ∈ S−Z and is meromorphic in
a for a ∈ S.
Let ϕ be a holomorphic map from the affine complex line C to X such that
the image of π◦ϕ is not contained in Z and
T (r ,π◦ϕ,LS) = o

(
T
(
r ,ϕ,L + π−1 (LS)

))
.

CONCLUSION: Then

qT
(
r ,ϕ,L + π

−1 (LS)
)
≤ N(r ,ϕ,D) + o

(
T
(
r ,ϕ,L + π

−1 (LS)
))
‖.

In other words,
p

∑
j=1

m (r ,ϕ,Dj)≤ (q−p)T
(
r ,ϕ,L + π

−1 (LS)
)

+o
(
T
(
r ,ϕ,L + π

−1 (LS)
))
‖.
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